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Abstract 
It has been 20 years since detailed cyclostationary (CS) and pseudo-cyclostationary (PCS) bearing signal 

models superseded the well-known periodic models of the mid-1980s. These CS models finally provided 

the justification for the use of the envelope spectrum as the primary diagnostic tool, despite this having been 

widely appreciated by diagnosticians for several decades. Yet there have been few further developments in 

signal modelling in the intervening years, while diagnostic methods have advanced significantly in that time. 

While these (stochastic) CS models have been widely accepted, many of their features are not well 

understood. This paper takes a fresh look at such models and examines them in detail. Several of their key 

(often misunderstood) features are explained, and their underlying physical assumptions outlined. The paper 

then presents a newer mixed signal model, with both CS and PCS properties, and shows application of this 

model to laboratory measurements from degradation tests on a bearing rig. It is hoped the paper will enable 

the development of improved algorithms for bearing diagnostics and prognostics. 

1 Introduction 

The field of bearing diagnostics has come a long way since McFadden and Smith proposed their famous 

‘single point defect’ bearing signal model in the mid-1980s [1]. At that time, the ‘high frequency resonance 

technique’ – involving the demodulation of a high frequency band, understood to be a system resonance 

potentially excited by a bearing fault, followed by envelope analysis – was well established. Techniques to 

select this band – a major topic of research over the last decade or two – were however still immature.  

About 15 years later, the concept of cyclostationarity, until then understood only in niche signal processing 

circles, made its way into the machine diagnostics field. McCormick and Nandi [2] and Capdessus et al. [3] 

were the earliest adopters, both explaining the value in applying cyclostationary (CS) signal models to 

diagnostic problems in rotating machinery. Soon after, Randall et al. [4] made the explicit connection 

between cyclostationarity and envelope analysis, explaining that the envelope spectrum amounts to the 

integration of the spectral correlation along the carrier frequency axis, leaving a spectrum of amplitude vs 

cyclic frequency, rich in diagnostic information. While the value of the envelope spectrum as a crucial 

diagnostic tool had been appreciated for decades, its connection with the new concept of cyclostationarity 

had not, until then, been thoroughly understood. This connection paved the way for many further 

developments. 

Signal models are valuable for diagnostic purposes as they allow complex signals to be meaningfully 

represented using only a small number of parameters that can often be tied directly to physical phenomena 

and sometimes even to the condition of the machine components. This allows for the development of optimal 
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signal processing tools and algorithms tailored to specific signal characteristics, a good example being the 

exploitation in recent years of cyclostationarity as a diagnostic indicator of faulty bearings, helping in the 

selection of the optimal frequency band for demodulation [5-8]. 

This paper takes a new look at the bearing signal models proposed over the last four decades – from 

McFadden and Smith’s periodic model [1], to the purely CS ‘jitter’ model of Randall et al. [4] and Antoni 

and Randall’s [9, 10] pseudo-CS ‘slip’ model, finishing with the recently proposed mixed CS/PCS model 

of Borghesani et al. [11]. The paper explains the differences in the underlying physical assumptions 

associated with each model, as well as the resulting statistical properties of each. Finally, an application is 

presented of the mixed model to signals obtained from run-to-failure tests of a bearing mounted on a 

laboratory test bench. 

The remainder of this paper is arranged as follows. The various bearing signal models – periodic, 

cyclostationary (‘jitter’), pseudo-cyclostationary, and a new mixed model – are described in Section 2. 

Section 3 describes the methodology employed to produce the results in Section 4. In Section 5, conclusions 

are given and topics for future work are canvassed. 

2 Bearing signal models 

This section discusses the properties of four bearing signal models: periodic, cyclostationary (‘jitter’), 

pseudo-cyclostationary, and a recently proposed mixed CS/PCS model. We begin with the general model 

of a bearing signal: 

 𝑥(𝑡) = ∑ 𝐴𝑘𝑠(𝑡 − 𝑇𝑘).∞
𝑘=−∞  (1) 

in which the parameters Ak and Tk, the amplitude and timing properties of the pulses, s(t), generated by a 

faulty rolling element bearing, are described in Figure 1. The amplitudes 𝐴𝑘 are modelled as independent 

identically distributed (i.i.d.) Gaussian samples with mean 𝜇𝐴 and variance 𝜎𝐴
2. However, the emphasis in 

the following will be on the timing statistics captured by 𝑇𝑘. For simplicity, no consideration is given here 

to modulation effects associated with passage of the rolling elements through the load zone. 

 

Figure 1: Illustration of terms used in bearing signal models [11] 

2.1 Timing properties of the different models 

2.1.1 Periodic model 

In the periodic model of McFadden and Smith [1], the impact times 𝑇𝑘 = 𝑘 ⋅ 𝑇, such that each pulse occurs 

exactly 𝑇 seconds after the previous and thus the timing of each pulse is deterministically known. The period 

𝑇 is known exactly (1/BPFO for an outer race fault), and, with no cage slip and no jitter of the rolling 

elements within the clearance of the cage, there is no randomness in the pulse timing properties. 
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2.1.2 Cyclostationary (CS) ‘jitter’ model 

The CS ‘jitter’ model proposed by Randall et al. [4] accounts for the fact that the rolling elements are each 

allowed to move circumferentially within the cage clearance, adding a small randomness to the location of 

each rolling element as it interacts with the fault. This randomness in location produces a random 

delay/advance in the pulse timing 𝜏𝑘 called ‘jitter’. This results in a truly CS bearing signal model, where 

the impact times are 𝑇𝑘 = 𝑘𝑇 + 𝜏𝑘. This jitter 𝜏𝑘 is modelled as another i.i.d. Gaussian process, with zero 

mean and variance 𝜎𝜏
2. 

One interesting feature of the randomness of this phenomenon is that jitter in one pulse does not carry over 

to the next, and so there is no accumulation in the uncertainty of future arrival times. Regardless of whether 

two pulses are consecutive or 100 pulses apart, the randomness of the distance between them only depends 

on the jitter of the two pulses. 

2.1.3 Pseudo-cyclostationary model 

Soon after the CS model of Randall et al. [4], Antoni and Randall [9, 10] introduced a pseudo-

cyclostationary signal based on cage slip, representing the combined slip of the rolling elements. In this 

model, the speed of the cage itself varies stochastically in comparison with the ideal kinematic (no slip) 

model, creating a random delay/advance in pulse timing that ‘carries over’ from one pulse to the next – i.e., 

if one pulse is ‘late’, the next is more likely to be late as well. In this case, the time lags between subsequent 

pulses are given by Δ𝑇𝑘 = 𝑇𝑘 − 𝑇𝑘−1, which again are modelled as i.i.d. Gaussian quantities with mean 

𝜇Δ ≈ 𝑇 and variance 𝜎Δ
2. Note that with the PCS model, unlike with jitter, the mean pulse interval 𝜇Δ 

deviates from the theoretical value, and the variance of the time-difference between any two pulses becomes 

proportional to their distance in time, i.e., the uncertainty of arrival times accumulates over time. 

2.1.4  New mixed model 

As explained by Borghesani et al. [11], the underlying physical causes behind the CS and PCS models – 

jitter and cage slip – are entirely justifiable, and in fact there is no reason why the two should not co-exist 

in the same signal. In that paper, a mixed CS/PCS model was developed based on a hidden variable 𝑡𝑘, the 

impact time if there was no clearance/jitter (only due to cage slip), which follows the pseudo-CS model: 

 𝑡𝑘 = 𝑡𝑘−1 + Δ𝑡𝑘, (2) 

with Δ𝑡𝑘~𝒩(𝜇Δ, 𝜎Δ
2) i.i.d.. An additive zero-mean jitter 𝜏𝑘 due to cage-clearance then results in the 

observed pulse timing 𝑇𝑘: 

 𝑇𝑘 = 𝑡𝑘 + 𝜏𝑘 , (3) 

with 𝜏𝑘~𝒩(0, 𝜎𝜏
2) i.i.d.. This results in variance of the time-difference between any two pulses linearly 

growing with their distance in time, but starting from an offset: 

 (𝑇𝑘+𝑛 − 𝑇𝑘)~𝒩 (𝑛𝜇Δ, |𝑛|𝜎Δ
2 + 2𝜎𝜏

2 ⋅ (1 − 𝛿𝑛,0)). (4) 

The differences in timing statistics and pulse timing uncertainty between the four models is illustrated in 

Figure 2 and Figure 3. 
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Figure 2: Timing statistics of different bearing signal models [11] 

2.2 Spectral properties of the different models 

2.2.1 Periodic model 

The purely periodic model produces an entirely deterministic signal characterised by discrete spectral 

components [1]. Despite still sometimes being employed, its usefulness in the development of new 

diagnostic tools and methods is somewhat limited as it does not reflect the complexities of bearing signals 

measured in practice. 

2.2.2 Cyclostationary (CS) ‘jitter’ model 

As explained in [11], the jitter model gives a frequency spectrum dominated in the low frequency region by 

truly periodic components and in the high frequency region by random content. [11] gives guidelines on 

calculating the crossover frequency at which the random part becomes dominant. The model will not be 

applied in this paper, however, and so further details are omitted. 
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Figure 3: Variance of pulse timing vs number of pulse periods for different bearing signal models [11] 

2.2.3 Pseudo-cyclostationary model 

Unlike the two previous models, the PCS model gives a spectrum that has no deterministic components. Its 

power spectral density (PSD) is given by: 

 𝔼{𝑃𝑆𝐷𝑥(𝑓)} =
|𝑆(𝑓)|2

𝜇Δ
⋅ 𝜇𝐴

2 ⋅ {
sinh(2𝜎Δ

2𝜋2𝑓2)

cosh(2𝜎Δ
2𝜋2𝑓2)−cos(2𝜋𝑓 𝑓𝑇 ⁄ )

+
𝜎𝐴

2

𝜇𝐴
2 }, (5) 

where 𝜇Δ is the actual mean bearing fault period, differing from the theoretical value 𝑇 due to cage slip 

(unlike with the periodic and CS models, where the fault period does not vary from T). Figure 4 gives a 

graphical representation of eq. (5), under the simplifying case of flat |𝑆(𝑓)|, for 𝜎Δ = 5% 𝑇 and 𝜎𝐴 =
10% 𝜇𝐴. 

In [11] a number of detailed observations are made of the PSD in Figure 4, but most important here is the 

point that the peaks in the spectrum (fault frequency ‘harmonics’, but strictly narrow band noise) will grow 

broader with harmonic order. An approximate half-power bandwidth of the n-th peak is: 

 
Δ𝑓𝑛

𝑓𝑇
≈ 2 cos−1(2 − cosh(2𝜋2𝑛2𝜎Δ

2𝑓𝑇
2)) ≈ 2𝜋𝑛2 𝜎Δ

2

𝜇Δ
2 . (6) 

The linearised approximation on the right is valid only for low harmonics and is shown in Figure 4 (black 

segments). Importantly, this allows for an approximate but very simple estimation of slip, 𝜎Δ, based on 

observation of the level of spread in the spectral peaks. This property will be exploited later in the paper. 
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Figure 4: Numerical example of the PSD of the pseudo-cyclostationary model [11] 

2.2.4 New mixed model 

As with the pseudo-CS model, the mixed model yields a purely random spectrum, with PSD [11]: 

 𝔼{𝑃𝑆𝐷𝑥(𝑓)} =
|𝑆(𝑓)|2

𝑇
⋅ 𝜇𝐴

2 ⋅ {1 − 𝑒−𝜎𝜏
2(2𝜋𝑓)2

+
𝑒−𝜎𝜏

2(2𝜋𝑓)2
sinh(2𝜎Δ

2𝜋2𝑓2)

cosh(2𝜎Δ
2𝜋2𝑓2)−cos(2𝜋𝑓 𝑓𝑇 ⁄ )

+
𝜎𝐴

2

𝜇𝐴
2 }. (7) 

This case has strong similarities with the pseudo-CS model, as shown in the PSDs illustrated in Figure 5, 

the main difference being the presence of 𝜎𝜏 (jitter) gives a faster convergence of the amplitude of peaks 

and valleys with respect to the pseudo-CS case. Note that the same half-power bandwidth approximation 

used in the pseudo-CS case holds for the estimation of 𝜎Δ, over which 𝜎𝜏 has little effect. 

The following sections will explain how this bearing model was applied to vibration signals from 

degradation tests on a laboratory bearing test rig. 

3 Methodology 

3.1 Experimental set up 

Bearing degradation tests were run on a SpectraQuest bearing test rig at UNSW Sydney. The rig is shown 

in Figure 6, along with a test bearing (6205 grease-lubricated deep-groove ball bearing) at the start of one 

of the tests. Full details of the experiments can be found in [12, 13]. In this paper, two records will be 

analysed, Tests 1 and 2. In both cases, the bearings started with a small dimple of 1 mm diameter and 0.1 mm 

depth on the outer race (right-hand side of Figure 6), and the fault was allowed to propagate to a size of 6-

7 mm over the remainder of the tests. Test 1 was run with a horizontal radial load of 10.5 kN applied to the 

bearing, while in Test 2 the load was 7 kN, representing about 75% and 50% of the rated dynamic load, 

respectively. Both tests were run at a shaft speed of 30 Hz, but the speed was occasionally reduced to 6 Hz 

to take vibration measurements, which was done initially every 50,000 cycles and then every 20,000 cycles 

once the spall had commenced growing. Each vibration measurement was sampled at 51.2 kHz for a duration 

of 12 s. Test 1 was run for 350,000 cycles, Test 2 for 2 million, and the spall size was measured periodically 

throughout the test by stopping the rig and disassembling the bearing, before reassembling/reinstalling them 
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and continuing with the test. A once-per-rev tacho signal was acquired synchronously, allowing for order 

tracking of the nominally constant speed signals. 

 

Figure 5: Numerical example of the PSD of the pseudo-CS and mixed models [11] 

 

Figure 6: UNSW bearing test-rig and test-bearing (adapted from [13, 14]) 

3.2 Signal processing 

Before fitting the mixed model of Sections 2.1.4 and 2.2.4 to the signals, the latter were first order tracked 

to account for any small incidental speed fluctuations. The rig tends to produce relatively clear bearing 

signals with no strong masking agents, and so no further processing was found to be necessary. After order 

tracking, envelope analysis was conducted to obtain a finer estimate of the actual fault frequency to assist 

with the fitting. 

3.3 Fitting of model parameters 

As explained in [11], it is possible to fit the mixed model parameters using maximum likelihood estimation 

based on the timing of individual pulses identified in the time (or angle) record. However, in this case, while 

the signals were relatively clean, the pulses were not sufficiently clear and repeatable to allow for a reliable 
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fitting in the time domain. Accordingly, harmonics of the fault frequency in the order spectrum were 

investigated for fitting. Such a fitting is based on the property, cf. Section 2.2.3 and Figure 4, that the 

expanding width of smeared fault ‘harmonics’ in the spectrum is directly related to 𝜎Δ, the level of pseudo-

CS in the signal. This meant that only the pseudo-CS-related parameters (𝜇Δ and 𝜎Δ) could be investigated, 

since the CS model parameters (𝜇τ and 𝜎𝜏) are very difficult to fit in the spectrum. This still provides fertile 

ground for investigation, however, as it is to be expected that 𝜇Δ and 𝜎Δ should both vary with bearing 

condition, as for example the spall size and surface roughness change, altering frictional forces on the rolling 

elements. In addition, a strong relationship between the PCS parameters and load was found in [11], and 

comparison here between the results of Tests 1 and 2 (75% and 50% rated load, respectively) may provide 

further confirmation of that phenomenon. 

The order spectrum of the measured signals was found to be rich in fault frequency harmonics, and after 

some initial trial and error the 8th harmonic was chosen for fitting in all cases. Generally, a higher harmonic 

is to be preferred, so long as it protrudes sufficiently from background noise, as it gives a greater number of 

samples to fit due to the increased spread of harmonics under pseudo-cyclostationarity. Here, the fitting was 

performed over the order range of ±1% of the component in question, using a mean-squared-error 

optimisation problem solved using fminsearch in MATLAB. The fitted parameters were the mean fault 

period 𝜇Δ (giving a refined estimate of the true fault frequency compared with the initial one from envelope 

analysis) and PCS level 𝜎Δ. 

An underlying assumption in this analysis is that while the bearings were degrading throughout the tests, 

the bearing condition (e.g., spall size) remained unchanged in each of the individual records. 

4 Results 

The results of the 𝜇̂Δ and 𝜎̂Δ fitting for the records from Test 2 (50% rated load) are shown in Figure 7. The 

estimated mean fault period, 𝜇̂Δ, is shown on the left, with 𝜎̂Δ plotted on the right. The plot on the left 

includes two sets of estimates for 𝜇̂Δ – one from the envelope spectrum (SES), the other from the MSE 

parameter fitting. Both plots also include the measured spall size taken on several occasions throughout the 

test. Note that there is some quantisation error from the SES-estimated 𝜇̂Δ values; this is because the 

estimates were simply ‘nearest-sample-based’ and did not involve any fitting. 

While some discontinuities in the 𝜇̂Δ trend can be seen, due to changes from (dis)assembly of the bearing 

and test rig, there is a clear overall trend in this parameter that matches the evolution in spall size, in 

particular the sharp jump towards the end of the test, when the level of slip reached almost 1% (𝜇̂Δ ≈ 1.008 

normalised) and the spall size 6.3 mm. 

Overall, it was found that the level of pseudo-cyclostationarity in the signals was very small, and this, 

combined with the relatively short (12 s) records made obtaining a good fit for 𝜎̂Δ difficult. This is reflected 

by the lack of any apparent trend (with spall size or at the inspection points where the rig was disassembled) 

throughout most of the right-hand plot, which likely just represents random fitting noise. However, at the 

end of the test, a sudden jump in 𝜎̂Δ values can be seen, coinciding with the rapid increase in spall size that 

occurred in that period. Further work will be required to confirm whether this tentative observation does 

indeed reflect a genuine physical relationship. 

Figure 8 shows the fitting results from Test 1 (75% rated load), presented identically to those of Figure 7. 

Here, more so than in Test 2, sharp discontinuities in 𝜇̂Δ can be seen, illustrating that disassembly and 

reassembly can give a clearly detectable change in the slip characteristics of the bearing. Note that for each 

inspection the cages of the bearings were completely separated and the rolling elements removed and then 

randomly reinstalled, so it is to be expected that this should change the kinematic properties of the bearing. 

Other than these jumps at the inspection points, it is difficult to discern any clear trend in 𝜇̂Δ throughout the 

test. Similarly, the plot of 𝜎̂Δ shows no discernible trend at all.  

A comparison of the Test 1 and 2 results offers further evidence (in addition to that presented in [11]) that 

load is an important factor in the pseudo-CS properties generated by faulty bearings, with more lightly 

loaded bearings producing more slip and stronger PCS content. For context, note that the radial load applied 
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to the bearings in this study (50 and 75%) is much greater than in most practical applications, and so the 

effect is likely to have been understated here. Axial load, not included here, is also likely to be an important 

‘PCS-enhancing’ factor in many applications because it changes the effective rolling diameter of each ball 

with its position. 

 

 

Figure 7: Evolution of estimated pseudo-CS model parameters 𝜇̂Δ and 𝜎̂Δ throughout Test 2 

 

Figure 8: Evolution of estimated pseudo-CS model parameters 𝜇̂Δ and 𝜎̂Δ throughout Test 1 

5 Conclusions and future work 

This study took a new look at bearing signal models and explained several key points of existing 

cyclostationary (CS) and pseudo-cyclostationary (PCS) models, both developed about 20 years ago. A 

recently proposed mixed CS/PCS signal model was then presented and the fitting of this model’s parameters 

was demonstrated using laboratory data from two degradation tests on a bearing test rig. Specifically, the 

fitted parameters were the mean fault period, 𝜇Δ, indicating the level of slip, and 𝜎Δ, indicating the level of 

pseudo-cyclostationarity. 
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The following conclusions can be drawn:  

1. The level of pseudo-CS was found to be very small in these tests, and consequently it was difficult 

to obtain reliable results for the fitting of 𝜎Δ. 

2. The fitting of 𝜇Δ, on the other hand, was straightforward and yielded meaningful results. 

3. In Test 2, where the bearing was run at 50% of its rated load, a strong correlation was found between 

the mean fault period (𝜇Δ), or slip level, and the size of the spall on the bearing outer race. 

4. In Test 1, where the bearing was run at 75% of its rated load, this correlation between 𝜇Δ and spall 

size was not evident; instead, discontinuities in 𝜇Δ were found, matching the inspection times when 

the bearing was removed from the rig and disassembled. 

5. It appears that 𝜇Δ has strong potential as a trending parameter indicative of bearing condition, but 

the preliminary results here suggest that very heavy radial loads may mask its capabilities. 

6. Although 𝜎Δ, the pseudo-CS level, was difficult to fit in this case, a very tentative finding is that 

there may be a positive relationship between 𝜎Δ and spall size. This was only (marginally) apparent 

for the lower load test, however (Test 2, 50%) and requires further testing and confirmation. 

Among the possibilities for future work, the following are worth noting: 

1. The cyclostationary model parameters representing ‘jitter’ (from clearance of the rolling elements 

in the cage) were not investigated in this study. An improved estimation method for these parameters 

would facilitate further developments and a better understanding of the relationship between cage 

clearance and bearing condition. 

2. Future experimental work will include testing with axial loads, with lower radial loads, and taking 

longer record lengths to assist with better fitting of the model parameters. 
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