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Abstract
Quasiperiodic systems are characterized by deterministic patterns that exhibit correlation in the long-range
order and present unique properties that have been the subject of extensive research in various areas of
physics as electronics, electromagnetics or elasticity. One of the most visible features of quasiperiodicity is
the self-similarity of the spectrum of permitted modes and frequencies. Sturmian quasiperiodic lattices are
under consideration in this work. A Sturmian word (or sequence) is a particular case of an infinite word
formed from a two-letter alphabet and, among other applications, allows the construction of quasiperiodic
patterns. Such sequences, also called mechanical words, can be generated from real numbers. Here we
propose to investigate systems structured according to quasiperiodic patterns governed by so-called Sturmian
sequences. This research is carried out in the context of structural dynamics and allows the application to
mechanical engineering of concepts that until now have been applied in other fields.

1 Introduction

The manipulation of waves is the main topic in many engineering areas. For doing that, the inverse design
of structured media with tailored properties is an important tool. In the last decades the research for using
periodic systems has been a very intensive area of work. However, periodic media have some limitations and
other types of symmetries are worthwhile to be explored. Quasi-periodic systems are promising candidates
and they have been less well studied. They are characterized by deterministic patterns that exhibit correlation
in the long-range order and present unique properties that have been the subject of extensive research in var-
ious areas of physics: electronics [1], electromagnetis [2], elasticity [3, 4]. The dispersion relation of these
systems exhibit band gaps, as the periodic ones. The most celebrated property of these media is the self-
similarity of the spectrum of permitted modes and frequencies [5, 6], as for example, in systems constructed
with the Fibonacci formalism [7, 8], which often take the form of the well-known Hofstadter butterfly [9]. In
mechanics, despite a few studies, the dispersion properties of quasiperiodic elastic media have not yet been
satisfactorily understood, specially the design of tailored structures with specific properties concerning wave
propagation. In references [10, 11, 12, 13] the elastodynamical properties of finite or infinite periodic 1D
rods and beams are studied. Recent developments of the research in this field comprise the analysis of how
localized modes arise in continuous elastic media with quasiperiodic stiffness modulation [4] of the analysis
of the effects of combined modulation of structural parameters with different arbitrarily related spatial pe-
riods on wave propagation properties of a general 1D waveguide [14]. In ref. [15] the investigation of the
frequency spectrum of 1D continuous quasiperiodic elastic media shows the fractal nature of the occurrence
of bandgaps. In the literature we can find different examples on the study of the spectrum of allowed modes
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as a function of a certain parameter that generates the quasiperiodic pattern. The most relevant case is that of
the aforementioned Hoesteadtler butterfly [9] in condensed matter, which has been reproduced and studied
in other works [8, 16]. Following the generation pattern known as the projection method [17] other authors
have obtained similar figures in other physical systems like discrete mass-spring lattices [18], quasiperiodic
beams [4], dielectric quasicrystals [19] or acoustic metamaterials [20].

Here we propose to investigate systems which are structured according to quasiperiodic patterns governed
by the so-called Sturmian sequences, something that will be carried out in the context of structural dynamics.
First we will introduce Sturmian sequences, and how to implement structured systems based on them. We
will also introduce the concept of Sturmian bulk spectrum and study the observed self-similarity properties.
Finally, two numerical examples are given in order to validate the theoretical results. In this sense, the ap-
plication of Sturmian sequences to mechanical engineering is revealed as a tool for the design of mechanical
structures with tailored properties for wave propagation.

2 Sturmian Words

In this section we will describe precisely how to build Sturmian sequences. These will be generated from a
real number, denoted by α ∈ R that plays the role of generation parameter and, without loss of generality, it
lies in the range 0 ≤ α ≤ 1.

Considere the sequence [0; a1, . . . , an], with ak > 0, for k ≥ 1 positive integer numbers as the continuous
fraction of α, namely

α = [0; a1, . . . , an] =
1

a1 +
· · ·+ 1

an−1 +
1

an

, (1)

Consider in addition a binary alphabet formed by two symbols, say {p, q}. Then, we define a Sturmian word
in a recursively way as the sequence of symbols

Bk = Bak
k−1 Bk−2 , 1 ≤ k ≤ n ,

B−1 = q , B0 = p , (2)

where both the exponent and the product must be understood as concatenations, i.e., p3(q2p) = pppqqp.
When α is a rational number, there exist a maximum numbrer fo iterations n being the Sturmian word
Bn the last one and the infinite word becomes in a periodic concatenation of Bn. On the contrary, if α is
irrational, then it is known that the sequence an becomes infinite and the associated Sturmian word has a
purely quasiperiodic pattern given by limn→∞ Bn. This form of constructing a Sturmian word is not unique
[21, 22] and also have different geometrical interpretations and recursive models [23, 24].

Each one of the words emerging from the recursive sequence (2) will be named Sturmian blocks. The last
block of a sequence {Bk}nk=1, is said to be the Sturmian block associated to α, and for them we will use
the notation B(α) = Bn. For numerical purposes, irrational numbers must be approximated by rationals
approximants.

Let us denote by Nk to the total number of symbols of the kth block, for k ≥ 0. Due to the recursive relation
of Eq. (2) in which at each step new ak blocks ot type Bk−1 are added to the existing block Bk−2, it follows
immediately that

Nk = ak Nk−1 +Nk−2 , 1 ≤ k ≤ n , N−1 = 1 , N0 = 1 . (3)

We are going to pay attention to the extreme values of α, 0 and 1. The value α = 0 does not have strictly a
continued fraction as shown in Eq. (1) but can be considered the limit of 0 = limr→∞[0; r] and therefore its
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associated sequence will also be the limit

B(α = 0) = lim
r→∞

B(1/r) = lim
r→∞

pr q = ppppp . . . (4)

On the other side, the value α = 1 has as (degenerated) continuous fraction 1 = 1/1 and therefore its
associated Sturmian sequence is

B(α = 1) = pq pq pq pq . . . (5)

Both limit values α = 0 and 1 correpond, in terms of a physical systems, with two well known structures: a
homogeneous medium and the periodic bi-layered structure, respectively.

3 Systems with quasiperiodic distribution of physical parameters
based on Sturmian words

In the previous section we have described the formation of words based on Sturmian sequences. In this
section we are going to explain how we can form different types of mechanical systems based on this idea,
the quasi-periodic variation of certain physical parameters. Consider a 1D dynamical system that we are
going to build it via the concatenation of different elements as for instance masses, springs, rods, elastic
supports, beams.... All of these elements have mechanical, inertial and geometrical properties in the context
of elastic waves.

Let us start with our first example consisting in a discrete lumped mass system. This system is characterized
by the parameters mass and spring coefficient. Given a number α ∈ [0, 1] = [0; a1, . . . , an], then the
Sturmian block associated to α, B(α) = Bn, has exactly N = Nn symbols according to the pattern given
by Eqs. (2) and (3). We can build our system by the periodic repetition of the block B(α), which in turn is
formed by N elements. One of the parameters mentinoned above (mass or spring constant,...), that we call
generically Θ, can vary but taking only two values among the binary set {θp, θq}. The rest of parameters
remain constant from element to element along the block. Thus, if Θ(j) denotes the value of the parameter
of the jth element, with 1 ≤ j ≤ N , then we have

Θ(j) =

{
θp if the jth term of B(α) is p
θq if the jth term of B(α) is q

, 1 ≤ j ≤ N . (6)

In the Fig. 1 the building process of the system is illustrated with three examples, a discrete spring-mass
system, a continuous rod (axial waves) and a continuous beam (flexural waves).

The three systems share the number α = 2/7 = [0; 2, 3], resulting in the block B(α) = pppqpppqp and in
consequence, all of them are instances of a quasiperiodic Sturmian pattern. In the spring-mass system, the
mass remains fixed but the rigidity of the spring assumes the roll of the parameter, i.e. Θ ≡ k, and kp or kq
are depending on the Sturmian sequence within B(α). The second system (shown in the middle of Fig. 1)
represents a straight rod with density ρ, cross sectional area A and Young modulus E. As known, the axial
compressional waves propagate at a velocity

√
EA/ρA. The infinite medium is structured into elements of

length l. In the particular case of this example, the axial stiffness EA is constant meanwhile the mass per
unit of length ρA varies among two values {ρAp, ρAq} as indicated in the the Sturmian block. Finally the
third example represents a beam on simple supports. Possible parameters which can be assigned to Θ are,
for instance, {ρA,EI,GAs}, where EI and GAs are the sectional bending and shear stiffness, respectively.
Note that even the span length between supports could also be changed from element to element obeying the
Sturmian block pattern. In Fig. 1 (bottom) the bending stiffness is assumed to take one of the two values EIp
and EIq as prescribed in B(α). In this case, the three examples have N = 9 elements which are repeated
periodically.

If α is an irrational number, theoretically the system is not periodic because B(α) has infinite number of
symbols. In a real case, α has to be approximated by the nth convergent [24]. As n increases, the effects of
quasiperiodicity become more relevant and visible in the system. One of the consequences is the selfsimilar-
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ity of the spectrum as more terms of the sequence {an} are added, something that can be visualized for the
Fibonacci case in ref. [25]

m m m mm m m m m m m m
k

pB( ) = p p q p p p q p

EIp EIp EIp EIq EIp EIp EIp EIq EIp EIpEIp

Ap Ap Ap Aq Ap Ap Ap Aq Ap ApAp

p kp kp kq kp kp kp kq kp kpkp

Discrete spring-mass system

Continuous rod (compressional waves)

Continuous beam (flexural waves)
Elements

Sturmian block associated to =2/7
{ }

Sturmian supercell, length L

Figure 1: Three simple examples of how we can build a dynamical systems based on Sturmian blocks
correspondint to number α = 2/7 = [0; 3, 2]. Above: a discrete spring-mass system, Θ ≡ k (spring
coefficients). Middle: a continuous rod (axial waves), Θ ≡ ρA (mass per unit of length). Bottom: a
continuous beam (flexural waves), Θ ≡ EI (sectional bending stiffness)

In practice we can only built systems associated to rational numbers (finite aproximants in case α to be
irrational), the study of such kind of systems is done via the use of the so-called supercell with N = Nn

elements. Since the system is formed by periodic repetition of the Sturmian block B(α), then Θ(j +N) =
Θ(j) for j > N . This supercell will be repeated periodically in the same way as the associated Sturmian
word, forming a mechanical waveguide. This will allow us to study the dispersion properties of such systems.

4 Spectrum of Sturmian structured media

It is well-known that one of the most relevant properties of wave propagation in periodic media is the emer-
gence of bandgaps in the frequency spectrum. A proper design of the unit cell can result in optimized location
of bandgaps or passbands. On other side, quasiperiodic media, like for example Fibonacci sequence–based
systems, exhibit self-similarity of the spectrum [5, 6, 7]. Here we want to study the spectral properties of
one-dimensional quasiperiodic systems formed by structural elements whose distribution is associated to a
Sturmian word. The proposed method allows to relate a value of the generating parameter α ∈ [0, 1] with a
system. By sweeping out the values of such generating parameter, we can form a family of structures with
determined properties as for instance can be the dispersion relations or the distribution of resonances. Then
we seek to relate this generating parameter α to the admitted frequencies in the system by means of the
so–called bulk spectrum.

The transfer matrix method (TMM) is an analytical method suitable for the study of one–dimensional wave
propagation. The TMM allows to express the state variables of the problem associated to a point of the system
from those of another point by means of a product of matrices, connecting the system properties between
both points. Denote by u(x, t) the state vector in time-domain at position x and at instant t. In general, this
vector contains both node displacements and internal forces of the system. Considering harmonic motion,
we can write u(x, t) = u(x) eiωt. Let us consider two points in the system xj and xk and denote uj =
u(xj), uk = u(xk). Then, the transfer matrix of the system between nodes j and k, such that xj < xk is a
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square matrix Tjk such that
uk = Tjk uj . (7)

As we menthioned above, considering our system as Sturmian means that certain element parameter Θ is
tunned following the Sturmian pattern B(α) associated to certain number α = [0; a1, . . . , an]. In the Fig. 2
we present a schematic sketch of a Sturmian system where the supercell given by B(α) is periodically
repeated.

Denoting Tj the transfer matrix between nodes j − 1 and j, the relationship between the state vectors at the
two ends of the unit cell can be written as

uN = (TN · · · · ·T1) u0 ≡ T (α)u0 . (8)

The above expression holds for any one-dimensional dynamic model, regardless of the algorithm used for its
construction. In the Sturmian case each block emerges from concatenation of previous blocks according to
the rule (2). If we consider the transfer matrix associated to the kth Sturmian block Bk, T k, we can stablish
the recursion

u0 u1 uj uj+1 uN

(1)

T1 Tj Tj+1 TN
... ...

(   )j+1( )j ( )N

TN

( )N (1)

T1

Supercell associated to B(  )

length, L

Element ElementElement
Nj1

Figure 2: A one-dimensional Sturmian structured system associated to the number α. The binary parameter
Θ(j) ∈ {θp, θq} changes its value according to the Sturmian pattern given by the block B(α)

T k = T k−2T ak
k−1 , 1 ≤ k ≤ n ,

T −1 = Tq , T 0 = Tp . (9)

The TM of the unit cell is then T (α) = T n and relates the state variables u0 and uN yielding

uN = T (α)u0 . (10)

Applying the Bloch theorem to the supercell we know that uN = eiκLu0, thus Eq (10) can be written then
as the linear eigenvalue problem

[T (α)− λ I] u0 = 0 , (11)

where the parameter is λ = eiκL. As known, the TM depends on the frequency ω. If there exist real solu-
tion for the wavenumber κ from Eq. (11) the corresponding frequency ω is in the passband of the system
and a wave of frequency ω is said to be admitted in the medium. On the contrary, if it is in a bandgap or
stopband, wave cannot be transmitted, i.e., is evanescent with an exponentially decaying amplitude (complex
wavenumber). In most structural models of rods and beams the transfer matrices are 2 × 2 or 4 × 4 in size.
For them, closed forms for the dispersion relations can be derived.

If T (α) is a 2× 2 matrix then the characteristic polynomial of Eq. (11) is

det [T (α)− λ I] = λ2 − tr [T (α)] λ+ det [T (α)] , (12)
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where tr(•) stands for the matrix trace operator. The fact that transfer matrix is unimodular [26] notably
simplifies the problem resulting, after some straight operations, the final expression for 2× 2 TM spectrum

cos (κL) =
1

2
tr [T (α)] . (13)

This approach can be extended to consider system described under 4× 4 transfer matrices [5] obtaining,

cos(κL) =
1

4

[
tr [T (α)]±

√
2 tr

[T 2(α)
]
− tr2 [T (α)] + 8

]
. (14)

The two solutions obtained lead to two dispersion branches related to waves of different nature in the model.
Thus, for instance, in the case of Timoshenko beams, (an example of 4× 4 TM), both solutions correspond
to the spectrum of pure bending and shear waves associated with each frequency.

From both Eqs (13) and (14) the wavenumber κ(ω) can be expressed analytically as function of frequency
[24]. Admitted frequencies are those values of ω which lead to a real wavenumber κ(ω). For 2 × 2 TM,
this can be reduced to the condition −2 ≤ tr [T (α)] ≤ 2. For 4 × 4 TM bandgaps are defined as those
frequencies which make the right hand side of Eq. (14) to be higher than 1 in absolute value. Collecting
the admitted frequencies, they can be arranged along a line so that passbands are depicted as segments and
stopbands are the bandgaps between them. Repeating the process for the whole range of α the passbands
and stopbands forme a figure, called bulk spectrum (BS). The finer the discretization of the interval [0, 1], the
better resolution of this graphical figure, which allows to visualize at a single glance the quasiperiodic profile
of our system based on the Sturmian sequences. In the following section we will present some properties of
BS that can be established a priori and that will be tested later in the numerical examples.

5 Numerical Examples

In this section we are going to present two examples of systems following a Sturmian quasiperiodic pattern.
We will study their spectral properties.

5.1 Example 1. Compressional waves in discrete systems

K
m

1 2N-1
...

N K
m m m m

1

m
2

m m m
N ...m

Single element

K K KK K

uNuju1

...

u0

mm

u  j
fj

f j

u  j -1
jK

jK

u =j { }u  j
f j

-1
j

Supercell

Figure 3: (Example 1) Sturmian quasiperiodic distribution of rigidities Kj in a discrete spring-mass system.

Lets consider a discrete spring-mass lattice (see Fig. 3). Following the methodology described above, the
system consists of the periodic concatenation of N single elements formed by a mass and a linear spring,
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with parameters mj and Kj , respectively. Here we are going to consider that the rigidities Kj are arranged
along the chain following the Sturmian sequence associated to α = [0; a1, . . . , an] ∈ [0, 1].

The horizontal displacements in time domain are described by uj(t). We consider harmonic motion with
circular frequency ω, i.e., uj(t) = uje

iωt and the harmonic force acting on the link elements is denoted by
fj(t) = fje

iωt. Then the state vector in the frequency domain can be defined as uj = {uj , fj}T . As shown in
Fig. 3, state vectors can be located at both ends of each element. The relationship between each state vector
and the preceding one is given by the product of the respective transfer matrices associated to the mass and
to the spring [26], i.e.

uj =

{
uj
fj

}
=

[
1 0

−mjω
2 1

] [
1 − 1

Kj

0 1

]{
uj−1

fj−1

}

=

[
1 1

Kj

−mjω
2 1− mjω

2

Kj

]{
uj−1

fj−1

}
≡ T(mj ,Kj)uj−1 , (15)

where T(mj ,Kj) denotes the transfer matrix of the jth element. In this notation is highlighted the fact that
mj and Kj are the dynamical parameters. As we have explained previousy, in our example Θ(j) = Kj ,
remaining constant the masses, i.e. mj = m for all j. The parameter Kj takes values from the binary set
{Kp,Kq} according to what is specified in the Sturmian block B(α), which in turn results a binary word from
the alphabet {p, q}. In Fig. (4) we present three systems associated with the numbers α = {2/7, 1/2, 7/8}.
We have determine the dispersion relations as well as the representation of the wave frequency bands (spec-
trum bands).

K
m m m

p
m m m m m m m m m m mm m m m m m

m m mm m m m mm m m m mm m m m mm m m m mm m m

Supercell, length L

m mm m m mm m m mm m m mm m m mm m m mm m m mm m mm mm

Kq
m

m

m

Kp Kp Kp Kp Kp Kp Kp Kp Kp Kp Kp KpKq Kq

Kq Kq Kq Kq KqKp Kp Kp Kp Kp Kp Kp Kp Kp Kp Kp Kp

KqKp KqKp KqKp KqKp KqKp KqKp KqKp Kp Kp

Supercell, length L

Supercell, length LSupercell, length LSupercell, length LSupercell, length LSupercell, length L

Supercell, length L

=2/7=[0;3,2] B(  )="pppqpppqp"

=1/2=[0;2] B(  )="ppq"

=7/8=[0;1,7] B(  )="pqpqpqpqpqpqpqp"

.

Figure 4: (Example 1) Three spring-mass systems associated to three numbers α = {2/7, 1/2, 7/8}. The
dispersion relation is determined assuming that the supercell of length L is distributed periodically

Using the particular values Kp = 1 N/m, Kq = 2Kp = 2 N/m, and m = 1 kg, the dispersion curves can be
constructed sweeping out the range of frequencies 0 ≤ ω ≤ 3 rad/s and solving the equation:

cos(κL) =
1

2
tr [T (α)] (16)

where κL is the dimensionless wavenumber and L stands for the supercell length. The fact that the supercell
is made up of single elements with different parameters leads to heterogeneity and therefore to the appearance
of passbands and stopbands. It turns out [27, 5] that the amount of passbands, coincides with the size of the
Sturmian sequence which in turn is closely related to the associated number α by N = N (α) (see [24]).
Projection on a vertical line of the whole set of admitted frequencies leads to a simplified representation of
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passbands and stopbands, resulting a vertical line in pieces that can be associated to the number α, generator
of the chain. The graphical representation that arises from the repetition of the process over the entire interval
0 ≤ α ≤ 1 gives rise to a figure like that of fig. 5. We call this representation the Sturmian bulk spectrum.
As it can be observed, it has a fractal nature. All the details can be found in [24].

Figure 5: Sturmian bulk spectrum of a spring-mass system with quasiperiodic distribution of rigidities Kj .
Top-left: bulk spectrum for the whole range of generator parameter 0 ≤ α ≤ 1. Top-right, bottom-right and
bottom-left: details A, B and C to visualize the selfsimilar structure of the bulk spectrum.

5.2 Example 2. Compressional waves in rods

We assume an infinite medium formed by single elements of length l. The jth element has stiffness and mass
properties given by EAj and ρAj , where EAj and ρAj stand for the compressional sectional stiffness and
the mass per unit of length, respectively. In order to simplify the notation, the parameters EAj and ρAj are
understood as the products of the Young modulus Ej and the density ρj and the area of the cross section Aj ,
associated to the jth element. As known, horizontal displacement u(x, t) and internal force f(x, t) in the jth
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element are related by
∂u

∂x
=

f(x, t)

EAj
,

∂f

∂x
= ρAj

∂2u

∂t2
. (17)

Assuming again harmonic motion with u(x, t) = U(x) eiωt and f(x, t) = F (x) eiωt, Eqs. (17) yields
{

U ′(x)
F ′(x)

}
=

[
0 1/EAj

−ω2 ρAj 0

]{
U(x)
F (x)

}
, (18)

where (•)′ = d(•)/dx denotes the space–domain derivative. The state vector u(x) = {U(x), F (x)}T
verifies then u′ = Wj(ω)u, which integrating between x = 0 and x = l give rise to the transfer matrix of a
single element, u(l) = eWj(ω)l u(0), where

Tj(ω) = eWj(ω)l =

[
cosµj

l
EAj µj

sinµj

−µj
EAj

l sinµj cosµj

]
, µj = ω l

√
ρAj

EAj
. (19)

In this example, Θ is the sectional stiffness EA, i.e., EAj ∈ {EAp, EAq}.

Fig. 6 presents the bulk spectra for the ratio EAp/EAq = 4. Other values of this ratio can be found in [24].
We know that α = 0 corresponds to the continuous homogeneous rod with parameters EAq and ρAq with
no stopbands in the whole frequency band. On the other side, α = 1 gives rise to the periodic binary system
“pqpqpq . . .”. Since rods are continuous structures, we will find passbands in the whole frequency band.
However the general pattern of bands distribution strongly depends on the contrast between both EAp and
EAq. Furthemore, a periodicity is observed in the vertical direction (frequency axis) of the bulk spectrum
(see [24]).

Aj
EAj

Aj-1
EAj-1

Aj+1
EAj+1

uj

uj

uj

+1

-1

lll

fj-1fj

ujuj-1

l

th single elementj

Figure 6: Upper part: Details of the horizontal displacement u(x, t) and internal forces f(x, t) in the jth
element. Lower part: Sturmian bulk spectra of a rod (compressional waves) with quasiperiodic variation of
elastic sectional stiffness between values {EAp, EAq}: The bottom left plot shows the bulk spectrum for
tthe ratio EAp = 4EAq. Darkened regions show frequency passbands. The plot on bottom right represents
the frequency passbands obtained from the analytical expression (23), for the value of EAp/EAq considered

Both, the bands width and the periodicity can be explained and somehow quantified studying the spectrum
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of the systems associated to the numbers given by the sequence {αr = 1/r}∞r=1. The associated Sturmian
block is B(αr) = p r. . . p q and therefore the transfer matrix yields

T (αr) = Tq(ω)T
r
p(ω) , (20)

where

Tq(ω) = eWq(ω)l =

[
cosµq

l
EAq µq

sinµq

−µq
EAq

l sinµq cosµq

]
, µq = ω l

√
ρAq

EAq
,

Tr
q(ω) = eWp(ω)(rl) =

[
cos(rµp)

l
EAp µp

sin(rµp)

−µp
EAp

l sin(rµp) cos(rµp)

]
, µp = ω l

√
ρAp

EAp
.

(21)

Admissibles frequencies correspond to the values of ω ∈ R such that −1 ≤ zr(ω) ≤ 1, where zr(ω) stands
for the half trace of the transfer matrix, which can be expressed as

zr(ω) =
1

2
tr
[
Tq(ω)T

r
p(ω)

]

=
(1 + λ)2

4λ
cos

(
λ+ r

λ

ω

lcq

)
− (1− λ)2

4λ
cos

(
λ− r

λ

ω

lcq

)
, λ =

√
EAp

EAq
, cq =

√
EAq

ρAq
.(22)

The conditions for the above expression to be periodic in frequency is that (λ+ r)/(λ− r) is rational, some-
thing that it holds provided that λ is rational. In fig. 6 the bulk spectrum for λ = 2 has been plotted. Along
the frequency direction, the figure has a periodicity equal to ∆ω = πλcq/l. The particular values of the
parameters are ρAp = ρAq = 1 kg/m, EAp = λ2EAq, EAq = 1 N/m, cq = 1 m/s. Therefore, ∆ω = 2π
rad/s. The plot shows clearly the periodicity not only for those values corresponding to αr = 1/r, but also
for the whole range 0 ≤ α ≤ 1. The higher the ratio λ =

√
EAp/EAq, the more contrast between both

rigidities. It is then expected that the passbands become narrower, as indeed occurs (see [24]).

Finally, we present a formula of the spectrum depending analytically on α and ω. Previous formula does not
include the number α explicitly. We wonder how the bands are distributed if we do r = 1/α, allowing α to
take any real number in the range 0 ≤ α ≤ 1, leading to the new formula

Z(α, ω) =
(1 + λ)2

4λ
cos

(
αλ+ 1

αλ

ω

lcq

)
− (1− λ)2

4λ
cos

(
αλ− 1

αλ

ω

lcq

)
(23)

It is important to note that, although it is a closed form, results to be an expression derived after substituting
αr by α. Its representation in figs. 6 (bottom right plot) is made in order to numerically observe how
passbands and stopbands are preproduce. Thus, we can say that

• The representation of the set {(α, ω) : −1 ≤ Z(α, ω) ≤ 1, } reproduces the global form of the wider
stopbands of the original bulk spectrum, but it does for 0 ≤ ω ≤ ∆ω = πλcq/2l. Further, the form is
completely different. In the fig. 6, it has only been depicted this range, which covers the half period of
the bulk spectrum.

• Eq. (23) reproduces the width pattern of the passbands: the larger the ratio λ, the narrower the pass-
bands (see [24]).

• The fractal structure of the spectrum is not replicated. The admitted frequency bands do not show
self-similarity.

Research on the formula developed and the explanation of the different phenomena observed is left for future
work.
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6 Conclusions

In this paper we have studied the dynamical properties of heterogeneous elastic structured media with
quasiperiodic pattern. These quasiperiodic patterns have been obtained through the use of Sturmian se-
quences where, considering any real number in the interval [0,1] given as a continued fraction, alllows us
to construct a word or sequence from a binary alphabet. We can relate this with two different values of one
single parameter from a mechanical system. Dynamical properties and dispersion relations of Sturmian me-
chanical systems have been analytically determined using the transfer matrix method. This method allow us
to study the self-similarity of the bulk spectrum. These properties have been validated and visualized along
two numerical examples. In the first one a spring-mass system has been analized where the spring constants
have been used as the quasiperiodic parameter. In the second one a rod is considered with the sectional stiff-
ness being changed according to the Sturmian pattern. In this case an analytical formula has been derived
that partially reproduces the pattern of the passbands for low frequencies. In both cases, the complete bulk
spectrum of admitted states or frequencies of the system have been obtained and the results derived from the
theoretical analysis validated.
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