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Abstract
In this article, the construction of state-space models suitable for dynamic substructuring (DS) applications
is analysed in detail. The procedure derives the state-space model from the Frequency Response Functions
(FRFs) measured on the components involved in the DS application. Moreover, a system identification algo-
rithm is used to estimate the modal parameters from these FRFs. All the steps to properly construct a reliable
state-space model by using the estimated modal parameters are presented and deeply analysed. Furthermore,
the well-known Virtual Point Transformation (VPT) method is extended to the state-space domain. The ap-
proaches here discussed are validated by exploiting a set of FRFs collected from an experimental dynamic
characterization of a mechanical system composed of two cross-shaped structures connected by a rubber
mount. The paper demonstrates that the FRFs of the estimated state-space models very well-match the FRFs
obtained by applying the VPT approach on the measured FRFs.

1 Introduction

During the last decades, dynamic substructuring (DS) has became a popular approach to characterize the
dynamic behaviour of complex components. In literature, a wide variety of DS techniques can be found (see
for example, [1],[2],[3],[4]). In this paper, we will focus our attention on the group of DS techniques tagged
as State-Space Substructuring (SSS).

As the name suggests, the SSS techniques make use of state-space models to describe the dynamic behaviour
of the components involved on the DS application. Thus, to use SSS methods we must start by identifying
those state-space models. When the characterization of the substructures is performed by an experimental
test, the estimation of the state-space models from the experimentally acquired data requires the use of system
identification algorithms. In literature, we may find a wide variety of algorithms, for instance the subspace
state-space algorithms, which are also commonly known as N4SID methods (see [5],[6],[7]), the PolyMAX
method developed in [8] and the Maximum Likelihood Modal Parameter method (ML-MM) (see, [9]). In
this article, to estimate state-space models from experimentally acquired data, the PolyMAX and ML-MM
will be employed. These algorithms estimate modal parameters from a given set of measured FRFs. Then,
by using those estimated modal parameters, state-space models can be constructed as reported in [10]. When
estimating state-space models to be used in SSS applications, besides seeking for an excellent fit between
the FRFs of the state-space models and the measured FRFs, the estimated models must also be physically
consistent (see [3]). In this way, these models must be stable, must obey the second law of Newton and must
be passive. Fortunately, by using PolyMAX and ML-MM algorithms, one makes sure that the estimated
poles are stable (i.e. its real part is either zero or negative) and hence the estimated state-space models
will be also stable. Nevertheless, these methods do not provide any guarantee that the estimated state-space
models will always respect the second Newton’s law nor that the estimated models are passive. In [11], an
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approach to force the estimated state-space models to respect the second Newton’s law was suggested. This
procedure will be used to force the estimated state-space models to obey the second Newton’s law. The
enforcement of passivity on the estimated state-space models lies beyond the scope of the present document.

SSS techniques also demand that the compatibility and equilibrium conditions (see [12]) are satisfied on
the interfaces of the coupled components. Therefore, the estimated state-space models representative of the
components involved on the DS application must present outputs and inputs placed on the interfaces of the
connected substructures. In practice, this requirement can be hard to accomplish, because the interfaces
might be inaccessible thus making the placement of sensors and/or actuators infeasible. To overcome this
issue, it is common to apply the so-called Virtual Point Transformation (VPT) approach (see [13]). By
assuming rigid local behaviour in the frequency band of interest, VPT enables the transformation of the
outputs and inputs of the measured FRFs into the intended locations (i.e. the defined virtual points). In this
way, the FRFs at the intended locations can be calculated. Then, from this set of FRFs the desired state-space
models can be estimated.

The present article aims at providing a detailed description of the construction of state-space models by using
modal parameters estimated from measured FRFs and to extend the VPT approach to the state-space domain.

The construction of state-space models from estimated modal parameters is analyzed in section 2. Then, in
section 3 the VPT technique is extended to the state-space domain. In section 4 the approaches discussed in
this paper are experimentally validated. Finally, in section 5 the conclusions are presented.

2 State-space models estimation

In this section, we will present how to compute a complete state-space model from the measured FRFs of an
experimentally characterized mechanical system. Section 2.1 presents how to construct a state-space model
from the modal parameters of the in-band modes. Then, in section 2.2 is presented how the contribution
of the out-of-band modes can be represented in state-space model form. Afterwards, sections 2.3 and 2.4
present how to force a state-space model to respect the second law of Newton and how to construct the
complete state-space model representative of the mechanical system under study, respectively.

2.1 In-band modes

To estimate the modal parameters from a set of measured FRFs, one must use a system identification method,
for instance the PolyMAX [8] method and the Maximum Likelihood Modal Parameter method (ML-MM)
[9]. From the obtained modal parameters, a modal model representative of the displacement FRFs of the
mechanical system can be established as given by the following equation:

[H(jω)] =

nm∑

r=1

(
{ψib,r}{lib,r}
jω − λib,r

+
{ψib,r}∗{lib,r}∗
jω − λ∗ib,r

)
+

[LR]

(jω)2
+ [UR] (1)

where, [H(jω)] ∈ Cno×ni is the FRF matrix, which presents no outputs and ni inputs, nm is the number
of identified modes, subscript [•]∗ denotes the complex conjugate of a matrix, {ψr} ∈ Cno×1 is the rth

mode shape, {lr} ∈ C1×ni is the rth modal participation factor, λr is the rth pole, [LR] ∈ Rno×ni and
[UR] ∈ Rno×ni are the lower and upper residuals matrices, whose function is modelling respectively the
influence of the lower and upper out-of-band modes in the considered frequency band. Finally, subscript ib
denotes vectors/matrices associated to the in-band modes.

By following [14], the modal model given by equation (1) can be rewritten as follows:

[H(jω)] = [Ψib Ψ∗
ib]

[
jω[I]−

[
Λib 0
0 Λ∗

ib

]]−1 [
Lib

L∗
ib

]
+

[LR]

(jω)2
+ [UR] (2)
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where, [Λ] ∈ Cnm×nm is a diagonal matrix that contains the system poles, [L] ∈ Cnm×ni is the modal
participation matrix and [Ψ] ∈ Cno×nm is the mode shape matrix.

From the well-known expression to calculate the FRFs of a state-space model (see [14]), equation (2) can be
rewritten as follows

[H(jω)] = [Cib](jω[I]− [Aib])
−1[Bib] +

[LR]

(jω)2
+ [UR] (3)

where, matrices [Aib], [Bib] and [Cib] are given in expression (4).

[Aib] =

[
Λib 0
0 Λ∗

ib

]
, [Bib] =

[
Lib

L∗
ib

]
, [Cib] = [Ψib Ψ∗

ib] (4)

2.2 Out-of-band modes

The contribution of the out-of-band modes may be significant, therefore the inclusion of the upper and lower
residual matrices is fundamental in order to obtain a complete state-space model representative of the system
under study. In this way, in the following subsections we will analyze how they can be represented in state-
space model form. The procedures that will be here presented were proposed in [10].

2.2.1 Upper residual matrix

To take into account the contribution of the upper residual matrix, residual compensation modes (RCMs) will
be computed from its singular value decomposition (SVD). By performing the SVD of the upper residual
matrix, we obtain:

[UR] = [UUR][σUR][VUR]
T =

nUR∑

r=1

{UUR,r}σUR,r{VUR,r}T (5)

where, [UUR] ∈ Rno×nUR and [VUR] ∈ RnUR×ni are the matrices composed by the left and right eigenvectors
of matrix [UR], respectively, whereas [σUR] ∈ RnUR×nUR is a diagonal matrix composed by the singular
values of [UR] [15]. Subscript UR denotes vectores/matrices associated to the upper residual matrix, while
nUR = min(ni, no).

By adopting a proportional damping modal model, for which the residue matrices (i.e. [Rr]={ψr}{lr}) are
pure imaginary [9], the upper residual matrix can be approximated as follows:

[UR] ≈ [HUR(jω)] =

nUR∑

r=1




2jωUR,r

√
1− ξ2UR,r

(jω)2 + 2jωξUR,rωUR,r + ω2
UR,r

{ψUR,r}{lUR,r}


 (6)

where, ωUR,r and ξUR,r are the chosen natural frequency and the damping ratio of the rth mode of the
computed RCMs, respectively. Vectors {ψUR,r} and {lUR,r} are given by expressions (7a) and (7b).

{ψUR,r} =
ωUR,r√
1− ξ2UR,r

√
σUR,r{UUR,r} (7a)

{lUR,r} = − j
2

√
σUR,r{VUR,r}T (7b)

By using equations (7a) and (7b) with equation (6), one can conclude that equations (5) and (6) match at
ω = 0 rads−1. To conclude this subsection, we must reflect on the selection of the natural frequencies
and damping ratios of the computed RCMs. For the sake of simplicity, let us assume that all the natural

ECODRIVE ITN - SPECIAL SESSION 1629



frequencies and all the damping ratios of the RCMs are chosen to be equal (which is a common choice).
Hence, for ω = 0 rads−1 and by using equation (6), we may establish the equality given by equation (8).

[UR] = [HUR(0)] =

∑nUR
r=1

(
2jωUR

√
1− ξ2UR{ψUR,r}{lUR,r}

)

ω2
UR

(8)

By mathematically manipulating equation (8), we arrive to the expression given below.

nUR∑

r=1

(
2jωUR

√
1− ξ2UR{ψUR,r}{lUR,r}

)
= ω2

UR[UR] (9)

By observing equations (6) and (9) it is straightforward that the higher the frequency ωUR and the lower the
damping ratio ξUR, the more accurate the proportional damping modal model (see equation (6)) will be to
approximate the contribution of the upper residual matrix. Nevertheless, if the constructed state-space model
is intended to be used for time-domain simulations, ξUR = 0 must not be selected, because undamped modes
may lead to instabilities as reported in [10]. On the other hand, in general it should be 5 × ωmax ≤ ωUR

(where ωmax is the maximum frequency of interest) [10].

From the estimated RCMs, a state-space model representative of the upper residual matrix can be defined as
follows:

{ẋUR(t)} = [AUR]{xUR(t)}+
[
BUR

] {
uUR(t)

}

{yUR(t)} =
[
CUR

]
{xUR(t)}

(10)

where, the value of its state-space matrices are given below.

[AUR] =

[
ΛUR 0
0 Λ∗

UR

]
, [BUR] =

[
LUR

L∗
UR

]
, [CUR] = [ΨUR Ψ∗

UR] (11)

Where, matrix [ΛUR] is a diagonal matrix composed by the poles of the RCMs, which are calculated by
following the expression given below.

λUR, λ
∗
UR = −ξURωUR ± jωUR

√
1− ξ2UR (12)

2.2.2 Lower residual matrix

To take into account the contribution of the lower residual matrix a proportional damping modal model will
be again employed. However, we are now seeking to approximate the contribution of a frequency dependent
matrix

[
−LR

ω2

]
(see equation (3)), for this reason it is not clear which matrix must be used to compute the

RCMs needed to construct the proportional damping modal model. To better assess this question, let us
consider a generic proportional damping modal model as follows:

− [LR]

ω2
≈ [HLR(jω)] =

nLR∑

r=1




2jωLR,r

√
1− ξ2LR,r

(jω)2 + 2jωξLR,rωLR,r + ω2
LR,r

{ψLR,r}{lLR,r}


 (13)

where, subscriptLR denotes vectors/matrices associated to the lower residual matrix, while nLR = min(ni, no).

By observing equation (13), we may conclude that the proportional modal model will represent a good
approximation of the contribution of

[
−LR

ω2

]
, if its numerator is equal to [LR] and if the natural frequencies

of the RCMs present very small values. Let us once again suppose that all the natural frequencies and all

ECODRIVE ITN - SPECIAL SESSION 1630



the damping ratios of the computed RCMs are selected to be equal. By making the referred assumption, for
ω = 0 rads−1 equation (13) may be rewritten as given below.

[HLR(0)] =

∑nLR
r=1

(
2jωLR

√
1− ξ2LR{ψLR,r}{lLR,r}

)

ω2
LR

(14)

As mentioned, we aim at constructing a modal model, whose numerator is equal to [LR], thus by observing
equation (14) we conclude that [HLR(0)] must be equal to

[
LR
ω2
LR

]
. Hence, the RCMs must be set up from

the modal parameters estimated through the SVD of
[

LR
ω2
LR

]
. By analysing equations (13) and (14), we may

also conclude that as we select smaller values for ωLR and ξLR, more accurate becomes the proportional
damping modal model to replicate the contribution of

[
−LR

ω2

]
. As rule of thumb, the value of ωLR must be

selected to respect ωLR ≤ 1
5ωmin (where ωmin is the minimum frequency of interest), while the value of

ξLR must be selected to be greater than zero if time-domain simulations are intended to be performed with
the estimated state-space model [10]. The computation of the RCMs representative of the lower out-of-band
modes follows the described procedures to compute the RCMs representative of the upper out-of-band ones
(see section 2.2.1). From the estimated RCMs, a state-space model representative of

[
−LR

ω2

]
can be defined

in a similar way as reported for the [UR] matrix (see equations (10), (11) and (12)).

2.3 Imposing the Newton’s second law

One of the criteria that the constructed state-space models must obey in order to be physically consistent
is the Newton’s second law. This physical law states that there exists a direct relation between force and
acceleration, not existing direct relations between force and displacement or velocity. This means that the
feedthrough matrix of displacement and velocity state-space models (state-space models whose output vec-
tors are composed by displacement and velocities, respectively) must be null. This condition is always
fulfilled by the displacement state-space models (since [D] = [0], see equation (2)), while the same does not
necessarily hold for velocity ones. To better demonstrate this fact, let us differentiate expression (3) in order
to obtain a velocity state-space model and its respective FRFs, as follows:

jω[H(jω)] = [Cib][Aib](jω[I]− [Aib])
−1[Bib] + [Cib][Bib] +

[LR]

jω
+ jω[UR] (15)

Observing equation (15), we can identify the state-space matrices of the velocity state-space model:

[Avel
ib ] = [Aib], [Bvel

ib ] = [Bib], [Cvel
ib ] = [Cib][Aib], [Dvel

ib ] = [Cib][Bib] (16)

where, superscript vel denotes vectors/matrices associated to a velocity state-space model.

From expressions (15) and (16), one may conclude that, indeed, we do not have any guarantee that [Dvel]
will be a null matrix. Besides making the state-space model violate the second law of Newton, the computa-
tion of a state-space model, whose [Dvel] ̸= [0] has negative practical effects. Firstly, it unables the proper
transformation of the state-space models into coupling form (for details see [3]), which disables the compu-
tation of minimal order models when coupling/decoupling state-space models that are not established in the
physical domain (e.g. models identified from experimentally acquired data). Secondly, it promotes a bias
between the accelerance FRF of the modal model and the FRFs of the constructed acceleration state-space
model. To demonstrate the second negative effect, let us differentiate equation (15) in order to obtain an
acceleration state-space model and its respective FRFs, as follows:

(jω)2[H(jω)] = [Cib][Aib][Aib](jω[I]− [Aib])
−1[Bib]+ [Cib][Aib][Bib]+jω[Cib][Bib]+ [LR]+(jω)2[UR]

(17)
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where, we can identify the state-space matrices of the acceleration state-space model as given below.

[Aaccel
ib ] = [Aib], [Baccel

ib ] = [Bib], [Caccel
ib ] = [Cib][Aib][Aib], [Daccel

ib ] = [Cib][Aib][Bib] (18)

Expressions (17) and (18) clearly demonstrate that the term jω[Cib][Bib] is not taken in account when con-
structing the acceleration state-space model. Hence, if this term is not null, a bias between the accelerance
FRFs of the modal model and of the state-space model will be observed. Before presenting a solution to
guarantee that [Cfull][Bfull] = [0] (where, subscript full denotes matrices/vectors associated to the com-
plete state-space model) is verified, we must better understand in which situations this product is null and in
which it is not. To perform such reasoning let us develop the product [Cib][Bib] by using the value of both
matrices given in equation (4).

[Cib][Bib] = [Ψib Ψ∗
ib]

[
Lib

L∗
ib

]
= [ΨibLib +Ψ∗

ibL
∗
ib] (19)

By analyzing equation (19), we understand that if our modal model is constructed by assuming proportional
damping, [Cib][Bib] = [0]. This statement holds for proportionally damped systems, because the product
[Ψib][Lib] would be pure imaginary (see equations (7a) and (7b)). Therefore, the state-space models rep-
resentative of both upper and lower out-of-band modes will verify [CUR,LR][BUR,LR] = [0], provided that
the computed RCMs are assumed to be under-damped (i.e. ξUR and ξLR are selected to be smaller than 1).
Note also that, if a modal model is constructed without assuming proportional damping, matrix [Cib][Bib]
will always be real.

In general, real mechanical systems do not present a proportional damping, hence [Cib][Bib] ̸= [0] is usually
verified. Thus, it is fundamental to figure out a procedure to make sure that [Cfull][Bfull] is null. A possible
solution is the computation of RCMs that are able to include the contribution of [Cib][Bib] into the complete
velocity state-space model and at same time that impose [Cfull][Bfull] = [0]. However, the inclusion of those
RCMs should be performed directly on the displacement state-space model, because it is simple to calculate
both velocity and acceleration models from it, whereas going from the velocity or acceleration model to the
displacement one involves the inversion of state-space matrices (see expressions (16) and (18)), which may
introduce ill-conditioned matrix inversions.

The modal parameters required to compute the intended RCMs must be obtained from the SVD of [Cib][Bib]
matrix as follows

[Cib][Bib] = [UCB][σCB][VCB]
T =

nCB∑

r=1

{UCB,r}σCB,r{VCB,r}T (20)

where, [UCB] ∈ Rno×nCB and [VCB] ∈ RnCB×ni are the matrices composed by the left and right eigen-
vectors of matrix [Cib][Bib], respectively, whereas [σCB] ∈ RnCB×nCB is a diagonal matrix composed by
the singular values of [Cib][Bib] [15]. Subscript CB denotes vectores/matrices associated to the [Cib][Bib]
matrix, while nCB = min(ni, no).

By following the approach reported in [11] and having in mind that [Cib][Bib] is real, the state-space model
of the RCMs used to impose [Cfull][Bfull] = [0], must be computed as follows.

[ACB] =



jωCB,1

. . .
jωCB,nCB


 [BCB] =




−√
σCB,1V

T
CB,1

...
−√

σCB,nCB
V T
CB,nCB


 [CCB] =




UCB,1
√
σCB,1

...
UCB,nCB

√
σCB,nCB




T

(21)

Let us assume that the state-space model intended to be constructed presents a single input and output (SISO).
By computing the FRF of the displacement state-space model of the RCM used to impose [Cfull][Bfull] =
[0], we obtain the expression given bellow.
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[HCB(jω)] = −UCBσCBV
T
CB

jω − jωCB
(22)

As the contribution of [Cib][Bib] is null for the complete displacement state-space model, we intend that
[HCB(jω)] be as close to null as possible. Thus, it is straightforward that as larger gets ωCB more accurate
is the RCM to fulfill the mentioned requirement. However, for both velocity and acceleration state-space
models, the contribution of [Cib][Bib] is not null (see equations (15) and (17)). To better understand how the
computed RCM compensates the contribution of this term into both velocity and acceleration models, it is
sufficient to observe the FRF of the velocity state-space model of the RCM as follows

jω[HCB(jω)] =
−ωCBUCBσCBV

T
CB

ω − ωCB
− UCBσCBV

T
CB (23)

where, the first term on the right side of equations (23) has the function of including the contribution of
[Cib][Bib] into the complete velocity state-space model, while the second term of the same equation imposes
that [Cfull][Bfull] = [0]. Hence, we may conclude that as larger gets ωCB more close to [Cib][Bib] will be
the value of the first term on the right side of the equation (as intended). Therefore, once again we conclude
that as we select a larger value of ωCB to set up the RCM more accurate it will be. Note that, even though
we have analyzed a SISO system to demonstrate that the RCMs are more accurate as ωCB is selected to be
greater, the same relation holds for multiple input and multiple output (MIMO) systems.

As final note, we must alert the readers that including undamped RCMs into the complete state-space model
is not recommended, when it is intended to perform time-domain simulations with the estimated state-space
model [10]. For this reason, if time-domain simulations are intended to be performed, it is suggested to
estimate the modal model from the measured FRFs by assuming a proportionally damped model. The com-
putation of such a model is possible, for instance, by following the procedure presented in [9], in this way
we ensure that [Cib][Bib] = [0]. However, for mechanical systems that are not suitable to be modelled by a
proportionally damped modal model, one should be prepared for the possibility of obtaining a lower quality
match between the computed modal model and the set of FRFs, when compared to the quality of the match
if a proportionally damped modal model would not be assumed.

2.4 Construction of the complete state-space model

After calculating the state-space models representative of the in-band modes (see section 2.1), of the upper
and lower out-of-band modes (see sections 2.2.1 and 2.2.2, respectively) and of the RCMs computed from
[Cib][Bib] (see section 2.3) a complete displacement state-space model can be established as follows

{ẋfull(t)} = [Afull]{xfull(t)}+
[
Bfull

] {
ufull(t)

}

{yfull(t)} =
[
Cfull

]
{xfull(t)}

(24)

where, the value of its state-space matrices are given by the following expression:

[Afull] =



Λib,LR,UR 0 0

0 Λ∗
ib,LR,UR 0

0 0 ACB


 , [Bfull] =



Lib,LR,UR

L∗
ib,LR,UR

BCB


 , [Cfull] =



Ψib,LR,UR

Ψ∗
ib,LR,UR

CCB



T

(25)

where, matrices [Λib,LR,UR], [Lib,LR,UR] and [Ψib,LR,UR] are given below.

[Λib,LR,UR] =



Λib 0 0
0 ΛLR 0
0 0 ΛUR


 , [Lib,LR,UR] =



Lib
LLR

LUR


 , [Ψib,LR,UR] = [Ψib ΨLR ΨUR] (26)
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3 Extending VPT approach to the state-space domain

Let us assume that by experimentally characterizing a mechanical system, whose interfaces were inaccessible
to place sensors and to be properly excited, the following set of FRFs was measured

[HMD(jω)] =
{Y (jω)}
{U(jω)} (27)

where, {Y (jω)} is the set of measured responses/outputs, [HMD(jω)] represents the set of measured FRFs
and {U(jω)} represents the excitation/inputs. Let us now further assume that this mechanical system will
be used in a DS application, hence we are required to obtain its FRFs at the interfaces. To obtain the FRFs
at the intended locations and provided that the component behaves as a rigid body in the frequency band of
interest, we may apply the VPT approach. By using this approach, we must transform the outputs and inputs
of the measured set of FRFs given by equation (27) into the intended locations (i.e. into the defined virtual
points) as follows

{Q(jω)} = [Ty][HMD(jω)][Tu]
T {M(jω)} (28)

where, {Q(jω)} represents the set of responses/outputs at the virtual points (VPs) location and {M(jω)}
represents the VPs forces, while matrices [Ty] and [Tu]

T are given below.

[Ty] = (RT
y Ry)

−1RT
y (29a) [Tu]

T = Ru(R
T
uRu)

−1 (29b)

where, matrices Ry and Ru must be computed as reported in [13].

Assuming that from [HMD(jω)] and by using the procedures presented in 2, a state-space model was iden-
tified, we have:

{ẋ(t)} = [AMD]{x(t)}+
[
BMD

] {
u(t)

}

{y(t)} =
[
CMD

]
{x(t)}

(30)

by calculating the FRFs of the state-space model given by expression (30) (see [14]), equation (28) can be
rewritten as follows.

{Q(jω)} = [Ty]
(
[CMD](jω[I]− [AMD])

−1[BMD]
)
[Tu]

T {M(jω)} (31)

By observing equation (31), we conclude that from the state-space model given in expression (30), we may
derive a state-space model, whose outputs are the VPs responses and the inputs are the VPs forces. The
state-space matrices of this model can be calculated as given below.

[AV P ] = [AMD], [BV P ] = [BMD][Tu]
T , [CV P ] = [Ty][CMD] (32)

It is worth mentioning that one can estimate a state-space model representative of the FRFs placed at the
defined VPs by firstly applying VPT on the measured FRFs and then by estimating the state-space model
representative of the FRFs at the defined VPs. However, if at the end of this process the user notices a mistake,
for instance on the [Ry] and/or [Ru] matrices, the full procedure will have to be repeated. Conversely, by
following the approach here described, if the user finds an error on the computation of the [Ry] and/or [Ru],
this mistake can be easily fixed, because a state-space model representative of the measured FRFs is available.
For this reason, one is just required to fix the transformation matrices and recalculate the state-space model
representative of the FRFs at the VPs locations in accordance with equation (31). The mentioned advantage
of the approach here described is substantial, because the estimation of state-space models representative of
experimentally acquired FRFs is usually a time consuming task.
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4 Experimental validation

4.1 Testing campaign

To experimentally validate the approaches here discussed, a structure composed by two steel crosses con-
nected by a rubber mount (from now on denoted as Assembly Steel) was tested (see figure 1).

(a) Front perspective. (b) Side perspective.

Figure 1: Structure composed by two steel crosses connected by a rubber mount.

Figure 2: Locations of measurement accelerometers (red), hammer impact directions (black arrows) and
virtual point (yellow) [16].

Every SSS method requires the use of state-space models, whose outputs and inputs are placed at the interface
of the structures involved in the DS application. Thus, we seek to obtain a state-space model representative
of the structure under analysis, whose outputs and inputs are placed at the interface of each cross with the
rubber mount. However, the placement of sensors or actuators at those locations is infeasible. For this reason,
the crosses were designed to behave as rigid bodies in the frequency range of interest, which was defined to
be between 20 Hz and 500 Hz.

The roving hammer testing approach was used to experimentally characterize the structure shown in figure
1. Each steel cross was instrumented with three accelerometers (PCB Model TLD356A32), while the model
of the used hammer is PCB 086C03. Hammer hits were provided at sixteen different locations (see figure
2). The cross shapes were designed to guarantee an effective excitation of the rotational DOFs. In this way,
a reliable twelve DOFs characterization of the structure under test was possible (see [17], [18]).

4.2 Identified state-space models

Two different state-space models were computed out of the experimental data collected during the testing
campaign described in section 4.1. The first one was obtained by applying VPT on the measured set of
FRFs, then a state-space model was computed from the obtained FRFs by following the procedures outlined
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in section 2. The second one was obtained by estimating a state-space model representative of the measured
FRFs (see section 2) and applying VPT to transform the outputs and inputs of the estimated state-space
models to the intended locations (from now on this approach will be denoted as VPT-SS). It is important
to mention that to estimate the modal parameters from the FRFs, the Simcenter Testlab® implementation
of the PolyMAX and ML-MM methods was exploited. Furthermore, during the estimation of the modal
parameters it was not assumed a proportional damped model, hence it is expected that [Cib][Bib] ̸= [0]. To
compute the RCMs, we have initially selected their natural frequencies to be: ωLR = 0.1 Hz, ωUR = 15000
Hz and ωCB = 50000 Hz. However, it was verified that for the state-space model directly estimated from
the FRFs obtained by applying VPT approach on the measured FRFs the contribution of jω[Cib][Bib] to the
acceleration state-space model (see equation (17)) was not properly compensated. Therefore, to compute
this state-space model was selected ωCB = 500000 Hz. Furthermore, the computed RCMs to compensate
the contribution of the out-of-band modes were selected to be undamped, in order to obtain the best possible
match between the FRFs of the estimated state-space models and the FRFs obtained by applying the VPT
approach on the measured FRFs. The comparison of two FRFs of both estimated state-space models with the
correspondent FRFs obtained by applying VPT on the measured FRFs is provided in figures 3. It is worth
to mention that in the caption of figures 3 and through the rest of the article, the virtual point outputs of the
rightmost cross in figure 1b will be denoted as v1, while the VP outputs of the leftmost cross (see figure 1b)
will be labelled as v2. On the other hand, the VP inputs of the rightmost cross in figure 1b will be tagged as
m1, while the VP outputs of the leftmost cross (see figure 1b) will be denoted as m2.
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Figure 3: Comparison of the FRFs obtained by applying VPT on the measured FRFs (reference FRFs, black)
with the same FRFs of the state-space models obtained directly from the transformed FRFs (red) and by
exploiting VPT-SS approach (yellow).

By observing figures 3, we may conclude that the FRFs of the state-space model obtained by VPT-SS very
well match those obtained by applying VPT approach on the measured FRFs (reference FRFs). The driving
point FRF of the state-space model directly estimated from the FRFs obtained by applying VPT approach
on the measured FRFs very well match the reference FRF (see figure 3b), while the FRF of the same state-
space model presented in figure 3a very well-match the reference FRF only up to 350 Hz. Furthermore,
the number of in-band modes used to set up this state-space model was 82, while 147 modes were used to
set up the model directly estimated from the VP-transformed FRFs. This fact may represent an important
decrease on the computational cost, when performing calculations with the state-space model obtained by
VPT-SS approach instead with the one directly estimated from the FRFs obtained by applying VPT on the
experimentally measured FRFs. It is worth mentioning that the structure under analysis (see figure 1) does
not present so many modes in the frequency band of interest. However, we are seeking for the best possible fit
between the FRFs of the estimated state-space models and the measured FRFs, which lead to the construction
of state-space models by including a large amount of modes.

To demonstrate that the procedures presented in sections 2.2 and 2.3 are also valid to compute damped
RCMs, VPT-SS was again used to estimate the intended state-space model, however this time the RCMs
responsible for compensating the contribution of the out-of-band modes were assumed to present a damping
ratio of 10%. In figure 4 is presented the comparison of two FRFs obtained by applying VPT on the measured
FRFs with the same FRFs of the state-space models obtained by using VPT-SS and by including undamped

ECODRIVE ITN - SPECIAL SESSION 1636



A
m

p
lit

u
d
e
 [
m

s
-2

N
-1

]

Frequency [Hz]

P
h
a
s
e
 [
°

]

(a) Accelerance FRF of the Assembly Steel, whose
output is the DOF vz2 and the input is the DOF mz

1.

A
m

p
lit

u
d
e
 [
ra

d
s

-2
N

-1
m

-1
]

Frequency [Hz]

P
h
a
s
e
 [
°

]

(b) Accelerance FRF of the Assembly Steel, whose
output is the DOF vRy

1 and the input is the DOFmRy

2 .

Figure 4: Comparison of the FRFs obtained by applying VPT approach on the measured FRFs (reference
FRFs, black) with the same FRFs of the state-space models estimated by using VPT-SS (red) and by including
undamped RCMs and RCMs presenting a damping ratio of 10% (yellow).

RCMs and RCMs presenting a damping ratio of 10%.

By observing figures 4, it is straightforward to conclude that all the FRFs well match. This validates the
approaches discussed in section 2 to estimate state-space models by including either undamped or damped
RCMs.

5 Conclusion

The approaches discussed in this paper showed to be accurate to compute state-space models from experi-
mentally acquired FRFs. Furthermore, the state-space model computed by VPT-SS showed to outperform
the state-space model estimated directly from the FRFs obtained by applying the VPT approach to transform
the measured FRFs to the intended locations. In fact, it turned out that the model obtained by VPT-SS was
composed by a smaller number of states and their FRFs showed to present a better quality match with the
FRFs obtained by applying VPT on the measured FRFs, specially at higher frequencies. Nevertheless, the
same comparison is recommended to be undertaken with FRFs collected from an experimental modal char-
acterization of different mechanical systems, that in order to better asses the advantage of using VPT-SS.
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