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Abstract 
This paper presents a simulation study on the control performance of a self-tuning vibration absorber. The 

study considers a tuneable vibration absorber, composed by a spring-mass-damper system with variable 

stiffness and damping components, which is attached to a single degree of freedom mechanical system 

subjected to a harmonic excitation. The online tuning of the stiffness and damping parameters is performed 

using an extremum seeking algorithm set to minimize the vibration kinetic energy of the hosting system. 

Starting from initial estimates of the stiffness and damping components of the absorber, the extremum 

seeking algorithm is implemented simultaneously on both variables until the optimal values are found. The 

study shows that the proposed tuning approach efficiently converges to the optimal stiffness and damping 

parameters of the absorber that would minimise the response of the hosting system due to tonal excitations. 

1 Introduction 

This paper presents a simulation study that investigates the use of an extremum seeking algorithm to tune 

the damping and stiffness parameters of a vibration absorber attached to a Single-Degree-Of-Freedom 

(SDOF) structure which is subject to a harmonic excitation. Vibration absorbers first recorded propositions 

appeared in a 1883 conference paper authored by Watts [1] and a patent filed by a German engineer in 1909 

[2]; and their mathematical formulation was presented in 1928 in a seminal work by Ormondroyd and Den 

Hartog [3]. These devices are known under several names, such as Dynamic Vibration Absorbers, Tuned 

Mass Damper, Vibration Neutraliser, and Tuned Vibration Absorbers (TVA)[4]–[6]; but the key concept is 

that they are composed of a seismic mass mounted on the structure via a spring-damper system whose 

parameters are carefully chosen such that the TVA couples with the mechanical system to attenuate its 

vibration at target frequencies [4]. 

This type of devices can tackle two different vibration control problems depending on whether the hosting 

structure is subject to tonal or to broad frequency band disturbances. In their work, Ormondroyd and Den 

Hartog [3], proposed that, for broad frequency band disturbances, the natural frequency of the absorber 

should be tuned to the resonance frequency of the controlled mode and its damping component should be 

tuned minimise the broadband response of that mode. They proved that the damping element not only 

dissipates energy but increases the frequency range over which the absorber is effective [3]. Instead, if the 

aim is to reduce the amplitude of the harmonic response due to a tonal disturbance, the absorber natural 

frequency should be tuned to the frequency of the forcing signal and its damping component should be as 

low as possible, considering that there is a trade-off between the TVA mass and its displacement [4]. 

In any case, the fine tuning of the TVA stiffness and damping parameters, especially the stiffness for tonal 

disturbances, is crucial to attain good vibration control performances. Poor vibration reductions or even 

increased vibrations due to mistuning of the TVA is one of the most common implementation problems, 
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particularly when the natural frequencies of the hosting structure shift upwards or downwards due to changes 

in the environmental or operational conditions such as temperature or load changes. To tackle this issue, 

many studies propose the use of adaptive TVAs in which diverse strategies haven been devised to enable 

the adjustment of the vibration absorber parameters to maintain an optimal tuning. One approach is to use 

electromechanical vibration absorbers instead of purely mechanical ones, e.g., shunted piezoelectric strain 

[7]–[12] or seismic electromagnetic transducers [13]–[17] so that by changing the electrical parameters of 

the transducers it is possible to tune the TVA to specific target frequencies. 

In recent studies, adaptive controllers based on extremum seeking algorithms were implemented to tune the 

parameters of vibration absorbers subject to broad frequency band disturbances [18], [19]. These algorithms 

relay on a perturb-and-observe approach, which is used to maximise a metric of the system performance 

with respect to one or more of its parameters [20]. Extremum seeking algorithms need an initial guess of the 

variable whose optimum is being searched and a cost function which represents the metric being maximised. 

Initially, they were used for controlling hard-to-model systems, in which static cost functions were employed 

[21], [22]. But, more recently, the use of dynamic cost functions has been investigated too [20], [23]. In 

[19], the cost function that is maximised by the extremum seeking algorithm is the power absorbed by the 

electrical shunt connected to a piezoelectric vibration absorber. 

In this work, an extremum seeking algorithm is implemented to simultaneously tune the stiffness and 

damping components of the TVA attached to SDOF structure subject to a sinusoidal excitation force. In 

particular, the extremum seeking algorithm is set to minimise the instantaneous kinetic energy of the hosting 

structure. The kinetic energy of the structure is also used to assess the performance of the vibration absorber.  

The study considers 3 different scenarios regarding the excitation force. The first one considers a tonal signal 

whose frequency is below the natural frequency of the structure. The second one is when the excitation 

frequency matches the structure natural frequency, and the third one is when the forcing frequency is above 

the natural frequency of the structure.  

The paper is structured in two main sections. Section 2 presents the SDOF model, the mathematical 

formulation and the control strategy implemented in the simulation study. Section 3 reports the performance 

results of the proposed self-tuning vibration absorber and a study on the impact of the inherent parameters 

of the extremum seeking algorithm on the algorithm convergence speed and stability. 

2 Model problem 

This section presents the model of the SDOF hosting system equipped with the TVA and the mathematical 

formulation used to obtain the kinetic energy of the hosting system, which is used both as a cost function to 

find the optimal stiffness and damping parameters of the TVA and to assess the performance of the absorber. 

2.1 SDOF system and TVA 

Figure 1 shows the whole setup, which is composed of a mass-spring-damper SDOF hosting system 

equipped with a mechanical vibration absorber characterised by variable damping and stiffness components. 

The hosting system is subject to a tonal excitation force 𝑓𝑠(𝑡).  

 𝑓𝑠 = 𝑓0sin⁡(𝜔0𝑡) . (1) 

The equations of motions of the hosting system and TVA masses are derived below, where the time 

dependence has been omitted for simplicity:  

 𝑚𝑠𝑦̈𝑠 + (𝑐𝑠 + 𝑐𝑎)𝑦̇𝑠 + (𝑘𝑠 + 𝑘𝑎)𝑦𝑠 − 𝑐𝑎𝑦̇𝑎 − 𝑘𝑎𝑦𝑎 ⁡= 𝑓𝑠 , (2) 

 𝑚𝑎𝑦̈𝑎 + 𝑐𝑎𝑦̇𝑎 + 𝑘𝑎𝑦𝑎 − 𝑐𝑎𝑦̇𝑠 − 𝑘𝑎𝑦𝑠 ⁡= 0 . (3) 

Here 𝑚𝑠, 𝑘𝑠, 𝑐𝑠, 𝑚𝑎, 𝑘𝑎 and 𝑐𝑎 are the mass, stiffness and damping of the structure and of the absorber 

respectively; and 𝑦𝑠, 𝑦̇𝑠, 𝑦̈𝑠, 𝑦𝑎, 𝑦̇𝑎, 𝑦̈𝑎 are the displacement, velocity and acceleration of the structure mass 

and of the absorber mass respectively. 
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Figure 1: Model of the system. 

 

Equations (2) and (3) can be casted into a matrix state space form as  

 𝐱̇ = 𝐀𝐱 + 𝐁𝑓𝑠 (4) 

where 𝐱 is the state vector, 𝐀 is the state matrix and 𝐁 is the input vector, which are given by  
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⁡. (5) 

The response of the hosting system is evaluated with respect to its kinetic energy, which is given by: 

 𝐾(𝑡) =
1

2
𝑚𝑠𝑦̇𝑠

2 . (6) 

The velocity of the hosting system mass and of the absorber mass can be retrieved from the state vector 

using 

 𝑦̇𝑠 = 𝐂K𝐱⁡,     𝑦̇𝑎 = 𝐂A𝐱 , (7) 

where the output matrix 𝐂K and 𝐂A are defined as 

 𝐂K = [0 0 1 0]⁡,     𝐂A = [0 0 0 1]⁡. (8) 

Using equations 7 and 8, the kinetic energy can be expressed as 

 𝐾(𝑡) =
1

2
𝑚𝑠𝐱

T𝐂K
T𝐂K𝐱 . (9) 

To assess the performance of the controller, the time-average kinetic energy of the system 𝐾̅ was obtained 

offline performing a centered moving average that uses a sliding window of one second. 

2.2 Extremum seeking tuning algorithm 

The tuning of the absorber stiffness and damping components is achieved using an extremum seeking 

gradient search algorithm that minimizes the cost function, which in this study is the kinetic energy 𝐾 of the 

structure presented in Eq. (9). The block diagram of the system state space model and the extremum seeking 

algorithms used to tune the absorber stiffness and damping is shown in Figure 2. The extremum seeking 

algorithm needs an initial guess of the damping 𝑐𝑎 and stiffness 𝑘𝑎 values to start the search, and in this 

study the tuning of both parameters is performed simultaneously. The instantaneous kinetic energy of the 

system is fed to the control feedback loops, which continuously modify 𝑐𝑎 and 𝑘𝑎 until they converge to the 

values that minimize the response of the system. 
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Figure 2: Block diagram of the state space model of the system with the extremum seeking gradient search 

feedback control loop for the online tuning of the TVA stiffness and damping components. 

 

The extremum seeking algorithm is a perturb-and-observe type of controller whose general working 

principle will be briefly explained here. The subscripts 𝑘 and 𝑐 used to identify the extremum seeking signals 

for each feedback control loop are omitted as the explanation is valid for both feedback loops. The algorithm 

is based on the perturbation of the signal being optimized, in this study 𝐾(𝑡), using a low frequency 

sinusoidal signal 𝑟(𝑡). This ripple signal is amplified by a gain 𝑔𝑟 and added to the feedback signal 𝑣(𝑡) to 

obtain the real-time value of the stiffness or damping component 𝑣̃(𝑡) implemented by the absorber as 

 𝑣̃(𝑡) = 𝑣(𝑡) + 𝑔𝑟𝑟(𝑡) , (10) 

which is characterized by a time-harmonic ripple too.  

Extremum seeking gradient search algorithms are used to maximize the value of a cost function with respect 

to a particular parameter of the system. In this case, as the goal is to minimize the kinetic energy of the 

hosting system, a negative feedback loop is implemented. After this gain is applied, the kinetic energy signal 

𝐾(𝑡) is expected to be in-phase with the sinusoidal signal 𝑟(𝑡) when 𝑣(𝑡) is below the optimal stiffness or 

damping value, and these two signals are expected to be out-of-phase when 𝑣(𝑡) is above the optimal value. 

Therefore, it is sufficient to check the relative phase of the signals 𝑟(𝑡) and 𝐾(𝑡) to determine if the tuning 

signal 𝑣(𝑡) should increase or decrease. To do this, low-frequency components of the kinetic energy signal 

𝐾(𝑡) are removed using a high-pass filter 𝑊ℎ𝑝 with a proper cut-off frequency. And to compare the phase 

of the of the reference signal 𝑟(𝑡) with the filtered signal 𝑢(𝑡), the controller multiplies these two signals to 

obtain 𝑢̃(𝑡), which is then filtered with a low pass filter 𝑊𝑙𝑝 to focus on the low-frequency phase difference 

of the compared signals. If they are in phase, the signal 𝑢̃(𝑡) will be a mostly positive wavy signal, otherwise 

it will be a mostly negative wavy signal. Then, the tuning signal 𝑣(𝑡) is obtained by rectifying the wavy 

signal  

 𝑣(𝑡) = 𝑔𝑢 ∫ 𝑢̃(𝑡)dt . (11) 

In conclusion, the tuning signal will tend to rise if it is lower than the optimal stiffness or damping value 

and tend to decrease if it is higher than the optimal value. The control performance of the implemented 

strategy and how each parameter of the extremum seeking feedback control loop affects the convergence 

speed and stability will be discussed in the following section. 
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3 TVA online tuning implementation 

The performance of the control system is analyzed for three different force excitation frequencies 𝜔0 with 

respect to the hosting system natural frequency 𝜔𝑠 = √𝑘𝑠 𝑚𝑠⁄ : 1) 𝜔0 = 0.5𝜔𝑠, 2) 𝜔0 = 𝜔𝑠 and 3) 𝜔0 =
1.5𝜔𝑠. To assess the behavior and performance of the controller, the time history of the structure and 

absorber mass velocities, of the kinetic energy and of the absorber stiffness and damping parameters are 

shown for the three cases, together with the frequency response of the structure implementing the optimal 

stiffness and damping of the TVA found by the extremum seeking algorithm. 

This section also includes a convergence analysis of the control algorithm considering a simplified system 

in which the absorber damping value remains constant and the stiffness is optimized. This analysis brings 

insights on how the intrinsic parameters of extremum seeking algorithm affect the stability and convergence 

speed of the algorithm. 

3.1 Control performance 

The physical parameters of the system considered for this simulation study are reported in Table 1. The 

natural frequency and the damping ratio of the hosting system are fixed at 140 Hz and 5% respectively. The 

mass of the absorber is fixed at 25% the mass of the structure. As already mentioned, three cases are 

analyzed, and considering that the structure natural frequency is 140 Hz the input frequency for each case 

is equal to 70 Hz, 140 Hz and 210 Hz respectively. 

Additionally, the extremum seeking feedback control loops must be configured. There are 6 parameters for 

each loop: the ripple signal 𝑟(𝑡) amplitude and frequency, the high-pass filter cut-off frequency, the low-

pass filter cut-off frequency, the ripple gain, and the tuning signal gain. Table 2 presents the values used to 

configure each loop for the three cases. If for one parameter different values are used for the three simulation 

cases, the three value are shown between brackets and separated by a comma, i.e. (case 1, case 2, case 3). 

Table 1: Parameters of the structure and TVA used in the simulation study. 

Parameter Symbol Value Units 

Mass of the structure 𝑚𝑠 0.3 kg 

Natural frequency of the structure 𝜔𝑠 879.6 rad/s 

Stiffness of the structure 𝑘𝑠 232.1 N/m 

Damping ratio of the structure 𝜁𝑠 0.05 --- 

Damping of the structure 𝑐𝑠 26.4 Ns/m 

Mass of the absorber 𝑚𝑎 0.075 kg 

Table 2: Structure and absorber parameters used in the simulation study. 

Parameter Symbol Damping control loop Stiffness control loop 

Ripple signal amplitude 𝐴𝑟 0.1  100  

Ripple gain 𝑔𝑟 1 (2, 10, 10) 

Tuning signal gain 𝑔𝑢 (2e8, 1e8, 11e8) (9e7, 7e7, 15e8) 

Ripple signal frequency 𝜔𝑟 6𝜋  2𝜋  

High-pass filter cut-off frequency 𝜔ℎ𝑝 3𝜋  𝜋  

Low-pass filter cut-off frequency 𝜔𝑙𝑝 0.55  0.2  
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Finally, the initial values of the TVA stiffness and damping should also be guessed. The initial damping 

value of the TVA is set in all three cases to a relatively high value, considering that for a harmonic excitation 

the optimum TVA damping value tends to zero [24]. Instead, for the initial guess of the absorber stiffness 

different starting conditions are considered. For the first case, when 𝜔0 = 0.5𝜔𝑠, the initial guess is set to a 

value such that the TVA is tuned to half the input frequency, i.e. 𝑘𝑎 = 𝑚𝑎(0.5𝜔0)
2. In cases 2 and 3, when 

𝜔0 = 𝜔𝑠 and 𝜔0 = 1.5𝜔𝑠, the initial guess for the stiffness is set to 𝑘𝑎 = 𝑚𝑎(1.5𝜔0)
2. Before conducting 

the simulation study, the optimum stiffness value was found for each case.  

 

 

Figure 3: Time domain response of the system for the case 1: 𝜔0 = 0.5𝜔𝑠. (a) velocity of the TVA mass, 

(b) velocity of the structure mass, (c) time-average kinetic energy absolute value (blue line) and dB reduction 

with reference to its initial value (red line), (d) stiffness of the TVA, and (e) damping of the TVA. 
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Figure 4: Time domain response of the system for the case 2: 𝜔0 = 𝜔𝑠. (a) velocity of the TVA mass, (b) 

velocity of the structure mass, (c) time-average kinetic energy absolute value (blue line) and dB reduction 

with reference to its initial value (red line), (d) stiffness of the TVA, and (e) damping of the TVA. 

 

Figures 3, 4, 5 present the time history plots during a span of 100 seconds for cases 1, 2, 3. More specifically 

the plots show: (a) the velocity of the TVA mass 𝑣𝑎, (b) the velocity of the structure mass 𝑣𝑠, (c) the time-

average kinetic energy 𝐾̅, (d) the stiffness 𝑘𝑎 and (e) the damping 𝑐𝑎 of the TVA. The time-average kinetic 

energy plot shows both the value in linear scale (blue line – left hand side scale) and the reduction value 

with respect to the initial value expressed in a dB (red line - right hand side scale). All simulations were 

carried out in such a way as during the initial 3 seconds, the extremum seeking controller is not working; 

and it is activated at 𝑡 = 0⁡s. Considering first Figure 3 for case 1, in plot (a), it can be seen that the velocity 

of the absorber 𝑣𝑎 starts with a low amplitude and, as the controller starts working, it constantly increases 

its value until reaching a maximum at around 67 s and then converges to a steady state value after 70 s. The  
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Figure 5: Time domain response of the system for the case 3: 𝜔0 = 1.5𝜔𝑠. (a) velocity of the TVA mass, 

(b) velocity of the structure mass, (c) time-average kinetic energy absolute value (blue line) and dB reduction 

with reference to its initial value (red line), (d) stiffness of the TVA, and (e) damping of the TVA. 

 

velocity 𝑣𝑠 of the structure mass shown in plot (b) presents exactly the opposite behavior: starting with its 

maximum value it decreases constantly, at a lower rate during the first 50 s and much faster between 50 s 

and 67 s, to then converge to a steady state minimum at around 70 s. Plot (c) shows that, when the controller 

is activated, the time-average kinetic energy always decreases, although at different rates, until converging 

to a minimum value at around 67 s. The red line shows that the greater reduction is achieved during the last 

15 s in which a reduction of around 15dB is attained. The controller achieves a reduction of around 17 dB 

in this configuration. Plots (d) and (e) show that, during the first 5 seconds, the stiffness 𝑘𝑎 and damping 𝑐𝑎 

varies rapidly towards the optimal values and then, during the following 5 sections, varies at a lower rate. 

After these 10 s, the stiffness continues in an almost constant rate and reaches its optimum value at around 
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67 s. Instead, the damping slowly starts to increase its convergence rate, with the highest rate in the last 15 s, 

which is also consistent with the rapid reduction of the kinetic energy in this interval. Overall, as expected 

for a TVA set to control tonal disturbances, the damping tends to zero.  

Figure 4 presents the time histories of the five parameters for case 2, that is, when the forcing frequency 

matches the natural frequency of the hosting system. In this case, plot (a) shows little variation for the 

velocity of the TVA, which already from the beginning has a relatively high value. Plot (b) shows a fast 

decrease of the velocity of the hosting system mass, reaching its minimum value in less than 20 s. Plot (c) 

shows a rapid reduction of the time-average kinetic energy, consistent with the behavior of 𝑣𝑠. The mean 

kinetic energy reduction is around 32 dB in this case. The evolution of the TVA stiffness presented in plot 

(d) is consistent with that shown in the previous plot. Indeed, convergence occurs in less than 20 s, with 

little overshoot between 20 s and 30 s, which explains the increments in 𝑣𝑠 and 𝐾 during this time interval. 

Plot (e) shows the evolution of the TVA damping, which in less than 10 s rapidly converges to a small value 

and then tends to zero. These plots show that, for this condition, the control strategy has a much faster 

convergence rate, reaching a significant control effect in less than 20 s and steady state conditions at 40 s. 

Figure 5 presents the time histories of the five parameters for case 3, that is, when the forcing frequency is 

50% larger than the natural frequency of the hosting system. Plot (a) shows that the TVA mass is already 

moving with an intermediate velocity when the controller is activated and then slowly increases until 

reaching a maximum at around 55 s to finally reach a steady state condition after 60 s. Plot (b) shows that 

the velocity of the hosting system mass has the opposite behavior. More specifically, it decreases its value 

when the controller is activated and reaches a minimum at 50 s, where there a short oscillation followed by 

a steady state behavior. Plot (c) with time-average kinetic energy is consistent with the 𝑣𝑠 plot, and thus 

reaches its lower vale at 55 s. In this case, the total reduction of the time-averaged kinetic energy is also 

around 32 dB. Plot (d) shows the evolution of the TVA stiffness, which after a fast convergence rate in the 

first 10 s, converges at an almost constant rate with little overshoot and reaching steady state condition in 

less than a minute. Plot (e) shows a rapid convergence of the TVA damping, which tends to zero in less than 

10 s and remains low for the rest of the simulation. 

Additional simulation analyses have shown that a particular condition can occur for cases 1 and 3, when the 

initial guess of the stiffness sets the TVA natural frequency in between the system natural frequency and the 

forcing frequency. In this case, the extremum seeking algorithm has a much longer convergence time. This 

is related to the higher velocity of the structure in the initial configuration, which induces the algorithm to 

drive the TVA damper 𝑐𝑎 to a bigger value. The increased damping reduces the gradient for the tuning of 

𝑘𝑎, thus its convergence speed. Eventually, with the convergence of TVA stiffness 𝑘𝑎, such that the TVA 

natural frequency is in the vicinity of the forcing frequency; the damping effect is overrun by the resonant 

absorber, thus, the extremum seeking drive the TVA damping 𝑐𝑎 towards zero. 

 

 

Figure 6: Spectra of the kinetic energy of the SDOF hosting system without the TVA (thick solid blue line), 

with the TVA implementing the theoretical optimal stiffness and damping values (solid red line) and the 

stiffness and damping values found with the extremum seeking algorithm (faint solid black line). (a) Case 

1: 𝜔0 = 0.5𝜔𝑠, (b) Case 2: 𝜔0 = 𝜔𝑠, and (c) Case 3: 𝜔0 = 1.5𝜔𝑠. 
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Figure 6 presents the spectra of the kinetic energy of the SDOF hosting system without the TVA (thick solid 

blue line), with the TVA implementing the theoretical optimal stiffness and damping values (solid red line) 

and the stiffness and damping values found with the extremum seeking algorithm (faint solid black line). 

Plot (a) show the results for the first case, plot (b) for the second case and plot (c) for the third case. These 

plots show that the vibration control performance obtained with the extremum seeking algorithm is very 

close to the optimal control derived using the theoretical optimal TVA stiffness and damping parameters.  

3.2 Extremum seeking algorithm convergence analysis 

This section presents a parametric analysis on how the 6 parameters that characterize the extremum seeking 

tuning algorithm may affect the stability and performance of the controller. In this simulation study the 

damping component 𝑐𝑎 of the TVA is set to a very low constant value equal to 0.01 Ns/m. This means that 

there is only one tuning loop active, which searches for the optimum stiffness value. 

 

 
Figure 7: Effects of (a) the ripple amplitude 𝐴𝑟, (b) the tuning signal gain 𝑔𝑢 and (c) the ripple gain 𝑔𝑟 on 

the algorithm convergence to the optimal stiffness value (dashed black line). The baseline is the thin solid 

blue line, the thick solid red line corresponds to a value higher than the baseline and the faint solid magenta 

line to a value lower than the baseline. 

 

As mentioned before, in total 6 parameters need to be configured for the extremum seeking algorithm: 3 

parameters concerning amplitudes or gains and 3 referred to frequencies. Figure 7 shows the plots regarding 

the effect of the ripple amplitude 𝐴𝑟, the tuning signal gain 𝑔𝑢 and the ripple gain 𝑔𝑟. Instead, Figure 8 

presents the plots regarding the effect of the ripple frequency 𝜔𝑟, the high-pass filter cut-off frequency 𝜔ℎ𝑝 

and the low-pass filter cut-off frequency 𝜔𝑙𝑝. The values shown in these figures are normalized with respect 

to the ripple amplitude 𝐴𝑟 in Figure 7 and to the forcing frequency 𝜔0 in Figure 8. In both figures, the blue 

solid line stands for a configuration that achieves good control performance and is used as a baseline for 

comparison with higher (thick solid red line) and lower (faint solid magenta line) values of the considered 
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parameter. The constant value indicated by the dashed blackline represents the optimum stiffness value for 

the absorber. 

Plot (a) in Figure 7 shows that increasing the ripple amplitude reduces the algorithm convergence time, but 

if the amplitude increases more than a certain threshold, the stability of the extremum seeking control is 

compromised. Plots (b) and (c) suggest that the same is true for the gains 𝑔𝑢 and 𝑔𝑟; higher gain values 

translate into faster convergence, but too high values lead to instability. 

Plot (a) of Figure 8 depicts the effect of the ripple frequency on the convergence behavior. An increase on 

the ripple frequency 𝜔𝑟, produces similar results as the increase on the ripple amplitude, 𝐴𝑟, i.e., the 

convergence speed is increased but can also compromise the stability of the controller. Plot (b) shows that 

increasing the high-pass filter cut-off frequency 𝜔ℎ𝑝 has the opposite effect, it reduces the speed of 

convergence and increases the stability of the system. Finally, Plot (c) indicates that increasing the low-pass 

filter cut-off frequency 𝜔𝑙𝑝 produces a similar effect has increasing the high-pass cut-off frequency 𝜔ℎ𝑝. 

As in most tuning strategies, a trade-off must be established to achieve good performance in a reasonable 

time without compromising the stability of the control system. In this study it was found that a proper 

implementation of the algorithm needs a careful choice of: first, the ripple signal frequency, second, the 

high-pass and, third, low-pass filters cut-off frequencies. After these frequencies are found to produce a 

stable and convergent algorithm, the gains can be increased to boost the convergence speed. It is also 

important to mention that, when the two TVA parameters are being tuned simultaneously, the ripple signals 

of each tuning loop should have different ripple frequency. 

 

 
Figure 8: Effect of (a) the ripple frequency 𝜔𝑟, (b) the high pass filter frequency and (c) the low pass filter 

frequency on the algorithm convergence to the optimal stiffness value (dashed black line). The baseline is 

the thin solid blue line, the thick solid red line is for a value higher than the baseline and the faint solid 

magenta line is for a value lower than the baseline.  
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4 Conclusions 

This paper has presented a simulation study on the implementation of a tuning strategy for the stiffness and 

damping components of a TVA to control the response of a SDOF mechanical system subject to a harmonic 

force. The tuning strategy employs an extremum seeking algorithm that uses as a cost function the kinetic 

energy of structure and is implemented to search for both the TVA optimal stiffness and optimal damping 

simultaneously. Three cases were considered, that is when the harmonic force frequency is lower, equal, 

and higher than the natural frequency of the structure. Simulation results show that the extremum seeking 

algorithm converges to the optimum parameters in around 65 s, 20 s, and 50 respectively; achieving kinetic 

energy reductions of the order of 17 dB to 33 dB. A parametric study has also been presented to give insights 

on how the configuration of the parameters that characterise the extremum seeking algorithm impact on the 

convergence speed and stability of the algorithm itself. The proposed system needs little information of the 

hosting mechanical system, as opposed to classical tuneable vibration absorbers, and shows good control 

performance for tonal excitations. 
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