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Abstract
A model order reduction technique, the Proper Generalized Decomposition (PGD), is presented for the as-
sessment of railway induced vibration. The methodology is elaborated for 2.5D track-soil models exploiting
the geometrical invariance of the track and soil. Firstly, the standard PGD methodology is described. The
formulation is introduced for a beam on a Winkler foundation and extended to a 2.5D ballast track. Secondly,
two alternative PGD formulations are discussed: a Petrov-Galerkin and a minimal residual approach. Results
are compared for the beam on a Winkler foundation and the 2.5D ballast track. The latter is discussed for
both a homogeneous and layered halfspace. The Petrov-Galerkin converges slightly faster. A possible ex-
planation is that the system is non-Hermitian. The minimal residual approach performs poorly for the 2.5D
ballast track in terms of CPU time and convergence.

1 Introduction

An increase in urban and high speed railway lines has been noted worldwide, as railways are more en-
vironmentally friendly in terms of energy consumption, CO2 and exhaust atmospheric emission. Multiple
challenges arise in the field of railway engineering as the source problem is a complex dynamic soil-structure
interaction problem that has to be evaluated for a wide frequency range (up to 80 Hz). The large number of
determining parameters asks for large-scale parametric studies.

Three-dimensional (3D) numerical models have been developed to assess the track as well as soil response,
based on the finite element method (FEM), boundary element method (BEM) [1] and the FEM combined
with Perfectly Matched Layers (PMLs) [2]. In an effort to reduce numerical complexity, two-and-a-half
dimensional (2.5D) models [3, 4] were developed, assuming the track and soil to be longitudinally invari-
ant. Although this reduces computational efforts, extensive studies are still hindered due to the curse of
dimensionality.

This paper proposes a reduced order strategy to assess vibration in 2.5D track models. The Proper Gener-
alised Decomposition (PGD) [5, 6, 7] provides a computational vademecum, computed in an offline phase,
in a low-rank format. The full solution can subsequently be generated in the online phase, when the param-
eter combination is specified. In contrast to classical a posteriori reduced order methods, PGD computes
a reduced order solution a priori and no new solves are required in the online stage. The PGD terms are
added in a greedy manner and consist of products of low dimensional functions, resulting in a separated
representation of the solution [8]. The technique has already been successfully applied to dynamic problems
[8, 9, 10, 11], although studies are often focused on results in the low-frequency band.

This paper aims to extend the PGD formulation to higher frequency bands as well as to study the use of
PGD in a multi-parameter context for 2.5D track models coupled with BEM. The PGD formulation is first
elaborated for a simplified model consisting of a beam on a Winkler foundation. The stiffness of the foun-
dation is added as an additional parameter to illustrate the use of PGD for parametric problems. Next, the
methodology is extended to the case of a 2.5D ballast track, where the spatial variation and frequency are
incorporated as variables. Results are presented for a beam on a Winkler foundation and a 2.5D ballast track
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supported by both a homogeneous halfspace and a layer on a halfspace, comparing the performance of all
algorithms in terms of both convergence and CPU time.

2 Proper Generalized Decomposition

The Proper Generalized Decomposition (PGD) provides a strategy for solving high-dimensional problems
by introducing a separable representation of the solution as a sum of rank-one tensors:

u(θ1, θ2, . . . , θN ) ≈
Ru∑

ru=1

N⊗

k=1

uru
k (θk) (1)

where the variables θk (with k = 1 . . . N ) denote all system variables, but can also represent additional
problem parameters. All functions uru

k (θk) are unknown a priori. The solution is computed using successive
enrichments, where each enrichment is added in a greedy manner. The optimal functions are computed
using a Galerkin projection as illustrated in detail in section 2.1 for a beam on a Winkler foundation. The
formulation is extended to a 2.5D ballast track in section 2.2

2.1 PGD for a beam on a Winkler foundation

The PGD strategy is elaborated for a beam on a Winkler foundation. This simplified geometry allows illus-
tration of the methodology and can easily be generalized. The model consists of an Euler-Bernoulli beam,
coupled with a Winkler foundation, accounting for the vertical spring stiffness and hysteretic damping. This
support is assumed to be invariant with respect to the longitudinal coordinate, allowing the y coordinate to
be transformed to the wavenumber ky. The beam is loaded with a vertical load. The vertical equilibrium
equation can be formulated in the wavenumber-frequency domain:

[
−ρrArω

2 + (1 + iηrp)k̄rp + ErIrk
4
y

]
ũz(ky, ω) = f̃z(ky, ω) (2)

where i is the imaginary unit, ρrAr is the beam’s mass per unit length and ErIr its bending stiffness. k̄rp is
the foundation stiffness per unit length and ηrp the loss factor.
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Figure 1: (a) Euler-Bernoulli beam on a Winkler foundation [12], and (b) 2.5D ballast track model consisting
of rails, sleepers and ballast, coupled with a BE mesh for the underlying layered halfspace.

The equilibrium equation is solved for a range of wavenumbers in the domain Iky and frequencies in Iω.
The displacement ũz(ky, ω, k̄rp) is therefore identified with a function defined on Iky ⊗ Iω with values in
Kky ⊗Kω. The spring stiffness k̄rp is considered as an extra parameter with domain Ik̄rp and values in Kk̄rp .
A weighted residual formulation is introduced:
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Find ũz ∈ Kky ⊗Kω ⊗Kk̄rpsuch that :
∫

Iky×Iω×Ik̄rp

ṽz ·
[
−ρrArω

2 + (1 + iηrp)k̄rp + ErIrk
4
y

]
ũz dkydωdk̄rp =

∫

Iky×Iω×Ik̄rp

ṽz · f̃z dkydωdk̄rp

∀ ṽz ∈ Kky ⊗Kω ⊗Kk̄rp (3)

The weighted residual form is valid for any virtual displacement field ṽz(ky, ω, k̄rp) and states that the
residual has to be orthogonal to the test functions. As a weighted residual formulation is introduced in all
subdomains, integration is performed along all variables.

To solve this problem, an approximate solution is proposed of the form:

ũz
(
ky, ω, k̄rp

)
≃

Ru+1∑

ru=1

uruky(ky)u
ru
ω (ω)uru

k̄rp
(k̄rp) (4)

where the wavenumber (uruky(ky) ∈ Kky ), frequency (uruω (ω) ∈ Kω) and rail pad stiffness (uru
k̄rp

(k̄rp ∈
Kk̄rp) functions form low-dimensional reduced bases for their respective domains. The solution is therefore
decomposed as a sum of Ru rank-1 contributions as proposed by the PGD formulation. As Ru enrichments
have already been computed, the methodology aims to compute the (Ru + 1)-th rank-1 contribution.

A discretization is introduced for all variables using a constant step size, resulting in Nky , Nω and Nk̄rp sam-
ples for the wavenumber, frequency and rail pad stiffness domain, respectively. The discretized displacement
field is given by:

ũz
(
ky, ω, k̄rp

)
≃

Ru+1∑

ru=1

(
NT

kyu
ru
ky

) (
NT

ωu
ru
ω

) (
NT

k̄rp
uru
k̄rp

)
(5)

where the vector uru
k provides the nodal values for variable k, while the matrix Nk contains the shape

functions in the respective domain. The same discretization is applied to the test functions, resulting in the
following discretization:

ṽz
(
ky, ω, k̄rp

)
≃

(
NT

kyvky

) (
NT

ωvω

) (
NT

k̄rp
vk̄rp

)
(6)

Both formulations are introduced in the weighted residual equation:

Find uRu+1
ky

∈ CNky ,uRu+1
ω ∈ CNω and uRu+1

k̄rp
∈ CNk̄rp such that :

∫

Iky×Iω×Ik̄rp

[(
NT

kyvky

)
⊗
(
NT

ωvω

)
⊗
(
NT

k̄rp
vk̄rp

)]H

[
−ρrArω

2 + (1 + iηrp)k̄rp + ErIrk
4
y

]

Ru+1∑

ru=1

[(
NT

kyu
ru
ky

)
⊗
(
NT

ωu
ru
ω

)
⊗
(
NT

k̄rp
uru
k̄rp

)]
dkydωdk̄rp

=

∫

Iky×Iω×Ik̄rp

[(
NT

kyvky

)
⊗
(
NT

ωvω

)
⊗
(
NT

k̄rp
vk̄rp

)]H
f̃z dkydωdk̄rp

∀ vky ∈ CNky , vω ∈ CNω , vk̄rp ∈ CNk̄rp (7)

In order to allow efficient multiplication with the shape functions, the force vector f̃z has to be separable
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with respect to the considered variables:

f̃z =

Rf∑

rf=1

f
rf
ky

⊗ f
rf
ω ⊗ f

rf
k̄rp

(8)

Grouping all unknowns on the left hand side, the problem can be stated as:

Find uRu+1
ky

∈ CNky ,uRu+1
ω ∈ CNω and uRu+1

k̄rp
∈ CNk̄rp such that :

VHAU0 = VHF − VHAU ∀ vky ∈ CNky , vω ∈ CNω , vk̄rp ∈ CNk̄rp (9)

with U0 a tensor containing all nodal values computed in previous enrichments:

U0 =

Ru∑

ru=1

uru
ky

⊗ uru
ω ⊗ uru

k̄rp
(10)

U a tensor containing all unknown nodal values:

U = uRu+1
ky

⊗ uRu+1
ω ⊗ uRu+1

k̄rp
(11)

V a tensor with the nodal values of the test functions:

V = vky ⊗ vω ⊗ vk̄rp (12)

F the force operator:

F =

Rf∑

rf=1

∫

Iky

Nky f
rf
ky
dky ⊗

∫

Iω

Nωf
rf
ω dω ⊗

∫

Ik̄rp

Nk̄rpf
rf
k̄rp

dk̄rp (13)

and A the stiffness operator:

A = ρrAr

∫

Iky

NkyN
T
kydky ⊗

∫

Iω

−ω2NωN
T
ωdω ⊗

∫

Ik̄rp

Nk̄rpN
T
k̄rp

dk̄rp+

(1 + iηrp)

∫

Iky

NkyN
T
kydky ⊗

∫

Iω

NωN
T
ωdω ⊗

∫

Ik̄rp

k̄rpNk̄rpN
T
k̄rp

dk̄rp+

ErIr

∫

Iky

k4yNkyN
T
kydky ⊗

∫

Iω

NωN
T
ωdω ⊗

∫

Ik̄rp

Nk̄rpN
T
k̄rp

dk̄rp (14)

Note that the stiffness operator A allows efficient multiplication with the displacements and test functions
due to its Kronecker form:

A =

RA∑

rA=1

ArA
ky

⊗ArA
ω ⊗ArA

k̄rp
(15)

The resulting system of equations is non-linear as the displacement tensor U contains a product of the un-
known nodal values uRu+1

k . As all displacement vectors at previous iterations (1 until Ru) are known, six
variables remain unknown, consisting of three displacement vectors (uRu+1

ky
, uRu+1

ω and uRu+1
k̄rp

) and three
test functions (vky , vω and vk̄rp).

To solve the system of equations, the test functions have to be further specified. Use can be made of either
a Galerkin or Petrov-Galerkin strategy. The first option is used in the standard PGD methodology and
represents an orthogonal projection of the residual as the set of test functions equals the set of displacements
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(V = U). In the Petrov-Galerkin strategy, an oblique projection is performed and additional equations have
to be specified to determine the test functions. This alternative approach is discussed in section 2.3.

Implementation of the Galerkin conditions (vky = uRu+1
ky

,vω = uRu+1
ω and vk̄rp = uRu+1

k̄rp
) reduces the

number of unknowns to three. The non-linear problem in equation (9) is solved using an alternating direction
strategy [5].

First, the equations are solved for the unknown displacement vector uRu+1
ky

. The other unknowns are initial-
ized using random unitary vectors. The equilibrium equations then reduce to:

Find uRu+1
ky

∈ CNky such that :
(
vky ⊗ uRu+1

ω ⊗ uRu+1
k̄rp

)H
A
(
uRu+1
ky

⊗ uRu+1
ω ⊗ uRu+1

k̄rp

)
=

(
vky ⊗ uRu+1

ω ⊗ uRu+1
k̄rp

)H
F −

(
vky ⊗ uRu+1

ω ⊗ uRu+1
k̄rp

)H
AU0 ∀vky ∈ CNky (16)

This can be further elaborated when taking into account that vky is arbitrary:

Find uRu+1
ky

∈ CNky such that :
(
Iky ⊗ uRu+1

ω ⊗ uRu+1
k̄rp

)H
A
(
uRu+1
ky

⊗ uRu+1
ω ⊗ uRu+1

k̄rp

)
=

(
Iky ⊗ uRu+1

ω ⊗ uRu+1
k̄rp

)H
F −

(
Iky ⊗ uRu+1

ω ⊗ uRu+1
k̄rp

)H
AU0 (17)

where Iky is an identity matrix of size Nky . This one-dimensional equation can be solved for the unknown
displacement vector uRu+1

ky
. In a next step the displacement vector uRu+1

ω is updated by fixing uRu+1
ky

and

uRu+1
k̄rp

. Additionally, the vector is normalized. Finally, the displacement vector uRu+1
k̄rp

is updated by fixing
the remaining variables and the resulting vector is normalized. The normalization of all vectors except one
ensures that the resulting rank-one tensor is uniquely defined. Alternatively, all vectors can be normalized
and the rank-one contribution is given by:

U = uRu+1
z

(
uRu+1
ky

⊗ uRu+1
ω ⊗ uRu+1

k̄rp

)
(18)

where uRu+1
z is a scalar. Both methodologies are equivalent. The updating process is repeated until con-

vergence, or until a maximum number of iterations is reached. The convergence criterion is specified in
section 3.

The displacement vector is updated:

U0 =

Ru+1∑

ru=1

uru
ky

⊗ uru
ω ⊗ uru

k̄rp
(19)

Convergence is then checked as elaborated in section 3. If the criterion is not fulfilled, a new rank-one
contribution (enrichment Ru + 2) is computed using the updated value for U0.

2.2 PGD for a 2.5D ballast track

The dynamic response of a ballast track is considered. It is assumed that the material properties and geometry
of the track, embankment and soil do not vary in the longitudinal direction ey parallel to the track, so
that the coordinate y can be transformed to the wavenumber ky and the problem can be formulated in the
wavenumber-frequency domain. A two-and-a-half dimensional (2.5D) finite element (FE) model is used,
as illustrated in figure 1b, significantly reducing the computational effort. As a result, the finite element
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discretization is only introduced in the cross section and the displacement vector û(x, y, z, ω) is discretized
as:

û(x, y, z, ω) ≃ Nxz(x, z)û(y, ω) (20)

where a hat above a variable denotes its representation in the frequency domain, N(x, z) holds the shape
functions in the cross section and û(y, ω) is the displacement vector along all degrees of freedom of the 2D
mesh.

Semi-analytical models are used for the track components. The rails are modelled as Euler-Bernoulli beams
with cross section Ar, moment of inertia Ir, Young’s modulus Er and density ρr. Their kinematics is re-
stricted to a vertical displacement. The rail pads have a stiffness krp and loss factor ηrp. This stiffness is
distributed in the longitudinal direction as k̄rp = krp/d, with d the sleeper distance. The sleepers have
a mass msl and rotational inertia Isl that are smeared in the longitudinal direction as m̄sl = msl/d and
Īsl = Isl/d. Rigid body kinematics are assumed for the sleepers in terms of their vertical displacement and
rotation. Therefore, the movement of the interface between the sleeper and ballast is restricted to rigid body
kinematics by means of constraint equations. The sleepers do not contribute to the longitudinal stiffness of
the track.

The ballast directly next to and in between the sleepers is added as extra mass. The remaining ballast is
modelled by means of a 2.5D finite element formulation assuming linear elastic isotropic soil behaviour. This
is described by means of five material properties: the shear wave velocity Cs, the dilatational wave velocity
Cp, the density ρ and the hysteretic material damping ratio in shear and dilatational deformation βs and βp.
Relative motion and friction between grains in the solid skeleton or presence of moisture in the pores results
in energy dissipation or material damping. This can be accounted for in the frequency domain by means of
the correspondence principle where both Lamé coefficients are replaced by the following complex moduli:

µ∗ = µ(1 + 2βsi); (λ+ 2µ)∗ = (λ+ 2µ)(1 + 2βpi) (21)

These complex Lamé coefficients in turn result in complex wave velocities C∗
s and C∗

p. The 2.5D finite
element equations are derived following a standard Galerkin procedure where the test functions v̂(x, y, z, ω)
use the same discretization as the displacement vector û(x, y, z, ω):

v̂(x, y, z, ω) ≃ Nxz(x, z)v̂(y, ω) (22)

The underlying halfspace is modelled by means of a Boundary Element Method (BEM) [13]. The displace-
ments of the interface between the ballast and soil are restricted to in-plane rigid body kinematics consisting
of a vertical translation and rotation around its centre. This restriction is achieved through constraint equa-
tions. The soil stiffness matrix Ks(py, ω) depends on the frequency and slowness py = ky/ω, accounting
for both rotational and translational stiffness as well as damping.

The coupling of the 2.5D semi-analytical and finite element equations for track and embankment, combined
with the soil stiffness, results in the following system of equations [3, 13]:

[
−ω2M+K0 − ipyωK1 − p2yω

2K2 + p4yω
4K4 +Ks(py, ω)

]
ũ(py, ω) = f̃(py, ω) (23)

where a tilde above a variable denotes its representation in the slowness-frequency domain.

The PGD methodology is used to solve equation (23). A weak form and discretization with respect to the
in-plane coordinates has already been introduced as the finite element method was used in the cross-section
with domain Ixz , resulting in displacement values in Kxz . Additionally, a range of slowness values on Ipy is
considered, resulting in displacement values in Kpy , and frequencies in Iω, with displacements in Kω. The
displacement vector can be approximated as:

ũ(x, py, z, ω) ≃
Ru∑

ru=1

uru
xz(x, z)u

ru
py(py)u

ru
ω (ω) (24)

All domains are discretized using Nxz , Npy and Nω samples for the in-plane coordinate, slowness and
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frequency, respectively. The number of samples in the spatial domain coincides with the total number of
degrees of freedom. The shape functions are grouped in the matrices Nxz , Npy and Nω, resulting in:

ũ(x, py, z, ω) ≃
Ru+1∑

ru=1

(Nxzu
ru
xz)

(
Npyu

ru
py

)
(Nωu

ru
ω ) (25)

Making use of equation (20), this is equivalent to:

ũ(py, ω) ≃
Ru+1∑

ru=1

uru
xz

(
Npyu

ru
py

)
(Nωu

ru
ω ) (26)

The same discretization is used for the test functions:

ṽ(x, py, z, ω) ≃ (Nxzvxz)
(
Npyvpy

)
(Nωvω) (27)

Making use of equation (22), this can be rewritten as:

ṽ(py, ω) ≃ vxz

(
Npyvpy

)
(Nωvω) (28)

The weighted residual formulation can be deduced from equation (23):

Find uRu+1
xz ∈ CNxz , uRu+1

py ∈ CNpy and uRu+1
ω ∈ CNω such that :

∫

Ipy×Iω

[
vxz ⊗

(
Npyvpy

)
⊗ (Nωvω)

]H [
−ω2M+K0 − ipyωK1 − p2yω

2K2 + p4yω
4K4 +Ks(py, ω)

]

[
Ru+1∑

ru=1

[
uru
xz ⊗

(
Npyu

ru
py

)
⊗ (Nωu

ru
ω )

]]
dpydω

=

∫

Ipy×Iω

[
vxz ⊗

(
Npyvpy

)
⊗ (Nωvω)

]H
f̃(py, ω) dpydω

∀ vxz ∈ CNxz , vpy ∈ CNpy , vω ∈ CNω (29)

Use of the alternating direction scheme discussed in section 2.1 is only feasible when the stiffness matrix has
a Kronecker form. This is hindered by the structure of the soil stiffness matrix Ks(py, ω). An approximate
separated form is computed by means of the Canonical Polyadic Decomposition (CPD) as a sum of rank-one
tensors:

Ks(py, ω) ≃
RK∑

rK=1

Kxz ⊗ krK
py ⊗ krK

ω (30)

where the matrix Kxz is equal to one for the degrees of freedom coinciding with the translational and rota-
tional displacement of the interface and zero otherwise. The rank RK of the decomposition should consider
both the accuracy of the solution and the computation time. The applied force also has a separated represen-
tation:

f̃(py, ω) =

Rf∑

rf=1

fxz ⊗ f
rf
py ⊗ f

rf
ω (31)

where the vector fxz gives the spatial variation of the load. After including the separated forms, the system
of equations can be rewritten as:

Find uRu+1
xz ∈ CNxz , uRu+1

py ∈ CNpy and uRu+1
ω ∈ CNω such that :

VHAU = VHF − VHAU0 ∀ vxz ∈ CNxz ,vpy ∈ CNpy ,vω ∈ CNω (32)
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with U0 a tensor containing all nodal values computed in previous enrichments:

U0 =

Ru∑

ru=1

uru
xz ⊗ uru

py ⊗ uru
ω (33)

U a tensor containing all unknown nodal values:

U = uRu+1
xz ⊗ uRu+1

py ⊗ uRu+1
ω (34)

V a tensor with the nodal values of the test functions:

V = vxz ⊗ vpy ⊗ vω (35)

F the force operator:

F =

Rf∑

rf=1

fxz ⊗
∫

Ipy

Npy f
rf
py dpy ⊗

∫

Iω

Nωf
rf
ω dω (36)

and A the stiffness operator:

A = M⊗
∫

Ipy

NpyN
T
pydpy ⊗

∫

Iω

−ω2NωN
T
ωdω +K0 ⊗

∫

Ipy

NpyN
T
pydpy ⊗

∫

Iω

NωN
T
ωdω+

K1 ⊗
∫

Ipy

−ipyNpyN
T
pydpy ⊗

∫

Iω

ωNωN
T
ωdω +K2 ⊗

∫

Ipy

−p2yNpyN
T
pydpy ⊗

∫

Iω

ω2NωN
T
ωdω+

K4 ⊗
∫

Ipy

p4yNpyN
T
pydpy ⊗

∫

Iω

ω4NωN
T
ωdω +Kxz ⊗

∫

Ipy

k1pyNpyN
T
pydpy ⊗

∫

Iω

k1ωNωN
T
ωdω + ...+

Kxz ⊗
∫

Ipy

kRk
py NpyN

T
pydpy ⊗

∫

Iω

kRk
ω NωN

T
ωdω (37)

Equation (32) is equivalent to equation (9) derived for the beam on a Winkler foundation. The same solution
strategy can therefore be adapted.

2.3 Alternative PGD formulations

In standard Galerkin PGD the energy norm of the error is minimized by means of an orthogonal projection
on the approximation space. A first alternative formulation introduces a Petrov-Galerkin approach, where
an oblique projection is performed. A second alternative uses a different norm in the minimization problem,
resulting in a minimal residual approach. Both alternatives are briefly discussed and compared subsequently
to the standard Galerkin PGD.

2.3.1 Petrov-Galerkin approach

For non-Hermitian problems, as presented in this paper, the use of an oblique projection can be favourable
[8]. An additional system of equations is considered to determine each test function vk corresponding
to variable k. As a result, N additional systems of equations are considered, consisting of an additional
orthogonality criterion for each variable k [7]:

Find vk ∈ CNk such that :

VHA
(
uRu+1
1 ⊗ · · · ⊗ u∗

k ⊗ · · · ⊗ uRu+1
N

)
=<

(
uRu+1
1 ⊗ · · · ⊗ u∗

k ⊗ · · · ⊗ uRu+1
N

)
,U >N

∀u∗
k ∈ CNk (38)
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with < · >N an inner product on the N -dimensional displacement space. In the examples, a classical inner
product in L2 is considered. The inner product is illustrated for the beam on a Winkler foundation for two
displacement fields uz and wz:

< uz, wz >3 = < uz, wz >L2(Iky )⊗L2(Iω)⊗L2(Ik̄rp )

=

∫

Iky

∫

Iω

∫

Ik̄rp

uz(ky, ω, k̄rp)wz(ky, ω, k̄rp) dkydωdk̄rp

≃
∫

Iky

∫

Iω

∫

Ik̄rp

[(
NT

kyuky

) (
NT

ωuω

) (
NT

k̄rp
uk̄rp

)]H
(39)

[(
NT

kywky

) (
NT

ωwω

) (
NT

k̄rp
wk̄rp

)]
dkydωdk̄rp

=

[
uky

∫

Iky

NkyN
T
ky dkywky

]
⊗
[
uω

∫

Iω

NωN
T
ω dωwω

]
⊗
[
uk̄rp

∫

Ik̄rp

Nk̄rpN
T
k̄rp

dk̄rpwk̄rp

]

The integrals only have to be evaluated once. The additional orthogonality equations are considered in
the alternating direction scheme as follows: 1) the displacement vector uRu+1

k is computed by fixing the
remaining variables, 2) the updated displacement vector uRu+1

k is used in equation (38) to evaluate the
corresponding test function vk. Consequently, the number of linear systems to evaluate in each iteration of
the alternating direction scheme is doubled.

2.3.2 Minimal residual approach

In the minimal residual approach, the residual is minimized in each enrichment. This corresponds to solving
[14, 12]:

U ∈ argmin
U∈S

Π(U) = 1

2
∥A(U0 + U)−F∥2I (40)

with S the space of rank-one tensors and I the identity matrix. The objective function Π(U) is elaborated as:

Π(U) = 1

2
UHAHA(U0 + U)− UHAHF +

1

2
FHF (41)

The same solution strategy as for the standard PGD can be used when the stiffness operator A is substituted
by AHA and the force operator F by AHF . As a result, the number of factors in the Kronecker forms
of both the stiffness and load operator strongly increases to R2

A and RA · Rf , respectively. Moreover, the
condition number of the stiffness operator is squared, often leading to bad convergence rates [7].

3 Results

First, a beam on a Winkler foundation is used to illustrate the convergence behaviour of the PGD enrichments.
Next, the 2.5D ballast track is considered for a track supported by both a homogeneous and layered halfspace.

The approximation spaces for the spatial variables are constructed using classic finite elements with three-
node triangular elements. For the remaining variables, the approximation space is one-dimensional and third
order local shape functions are used.

Within the fixed point iteration scheme, convergence is checked using solutions at subsequent iterations for
each variable as: ∥∥∥uRu+1,i

k − uRu+1,i−1
k

∥∥∥
2
< ϵ (42)

where k corresponds to the variable and i counts the number of fixed point iterations. This number is also
limited to 100 to ensure that the fixed point iterations break down within reasonable time.
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All results are computed considering the direct solution of the system of equations for all parameter combi-
nations, as well as using the PGD algorithms. The error can be estimated as:

ϵRu =
||URu − Uan||F

||Uan||F
(43)

with URu the full displacement tensor computed with Ru PGD enrichments and Uan the direct solution of
the equilibrium equations. || · ||F is the Frobenius norm of the tensor.

As the full solution is generally not available, alternative convergence criteria can be checked. The rela-
tive contribution of the current enrichment U to the total displacement tensor U0 can give an indication of
convergence:

||U||F
||U0||F

< ϵ (44)

Alternatively, convergence can be checked based on the norm of the first enrichment U1, as this is generally
cheaper to evaluate:

||U||F
||U1||F

< ϵ (45)

The validity of this criterion is discussed in the presented examples.

As discussed in section 2.3, the formulation of the PGD can be altered as well as the projection. Four
different algorithms can be distinguished:

• PGD-G: minimization of the energy norm of the error using an orthogonal projection;

• PGD-PG: minimization of the energy norm of the error using an oblique projection;

• MinRes-G: minimization of the 2-norm of the residual using an orthogonal projection;

• MinRes-PG: minimization of the 2-norm of the residual using an oblique projection.

3.1 Beam on a Winkler foundation

The results are computed for a UIC60 rail with a mass per unit length ρrAr of 60.21 kg/m and bending
stiffness ErIr of 6.68 MNm2. The rail pads have a variable stiffness with a nominal value of 255.7 MN/m2.
Damping is accounted for by means of a loss factor ηrp equal to 0.1. A vertical unit load is considered in the
frequency-wavenumber domain to compute the transfer function of the rail.

The solution of equation (2) is used as a reference solution, from which the dispersion curve of the bending
wave can be derived (for the case of zero damping):

ky =
4

√
ρrArω2 − k̄rp

ErIr
(46)

The bending wave propagates through the rail starting from the cut-on frequency ωco:

ωco =

√
k̄rp
ρrAr

(47)

The cut-on frequency of the rail is included in the sampling for the full range of rail pad stiffness values. An
overview of the sampling is given in table 1. All samples are linearly spaced.
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(a) (b) (c)

(d) (e)

Figure 2: Modulus of the rail receptance as a function of frequency and wavenumber for a beam on a Winkler
foundation with the lowest spring stiffness (204.6 MN/m2) using (a) the direct solution of the equilibrium
equation, (b) PGD-G, (c) PGD-PG, (d) MinRes-G, and (e) MinRes-PG algorithm with 50 enrichments.

(a) (b)

Figure 3: (a) Dimensionless error ϵRu , and (b) relative contribution of last enrichment for the beam on a
Winkler foundation for PGD-G (black solid line), PGD-PG (black dashed line), MinRes-G (red solid line),
and MinRes-PG (red dashed line) approach.

Table 1: Sampling variables for the beam on a Winkler foundation.

Variable Range Number of samples

Frequency 1-400 Hz 400
Wavenumber 0-3 rad/m 400

Spring stiffness [0.8, 1.2] · 255.7 MN/m2 61

The results are presented in the frequency-wavenumber domain for the lowest spring stiffness. The analyt-
ical solution is compared to the four methodologies in figure 2. The dimensionless error and convergence
criterion are shown in figure 3. One can distinguish the bending wave as the zone of maximum response.
Complex dynamic behaviour is found and more enrichments are needed to capture the displacements as is
clear from figure 2b. The use of a Petrov-Galerkin approach results in quicker and smoother convergence for
both the standard PGD and minimal residual approach, with overall faster convergence for the latter. How-
ever, the dimensionless error is still well above 0.01 after 50 enrichments for all algorithms. This indicates
that, although some improvements are made, a high number of enrichments is still needed. The convergence
criterion based on the relative contribution of the last enrichment proves to be quite stable for the standard
PGD methodology, but strongly varies for the minimal residual formulation.
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3.2 2.5D ballast track

The geometry is illustrated in figure 1b. The results are computed for a UIC60 rail as described in section 1b.
The rail pads are of medium stiffness with a rail pad stiffness of 120 MN/m2 and loss factor of 0.15. The
sleepers have a spacing of 0.67 m and each sleeper has dimensions 2.5 m× 0.263 m× 0.185 m. The ballast
has a Young’s modulus of 100 MPa, a Poisson’s ratio of 0.35 and a density of 2000 kg/m3. The ballast has
a lower width of 3.90 m, upper width of 3.30 m and height of 0.50 m.

For the underlying soil, two different cases are discussed: a homogeneous halfspace and a layer on a halfs-
pace. The properties of the halfspace and layer are given in table 2.

Table 2: Soil parameters for the halfspace and layer.

h Cs Cp ρ βs βp
[m] [m/s] [m/s] [kg/m3] [-] [-]

Layer 3 150 300 1800 0.025 0.025
Halfspace ∞ 300 600 1800 0.025 0.025

The resulting soil stiffness matrices have to be separated using a CPD. As the halfspace shows non-dispersive
behaviour, the displacements become less complex and only five CPD terms have to be considered. For the
layered soil the number of CPD terms is increased to ten, resulting in a dimensionless error of 0.2%.

A 2D mesh is generated consisting of 744 degrees of freedom. For the other variables equidistant sampling
is used as described in table 3. The slowness sampling results in dimensionless wavenumber values ranging
from 0 until 3, where the dimensionless wavenumber is defined as k̄y = kyCs/ω, with Cs the lowest shear
wave velocity.

Table 3: Sampling variables for the 2.5D ballast track.

Variable Range Number of samples

Frequency 1-49 Hz 49
Slowness [0-3]/Cs s/m 151

The transfer function of the ballast track is computed in the slowness-frequency domain. The load is evenly
distributed over both rails. Results are shown in the dimensionless wavenumber-frequency domain for the
rail receptance. The reference solution consists of the direction solution of the equilibrium equations in equa-
tion (23), as shown in figure 4a for the homogeneous halfspace. The zone of maximum response corresponds
to the non-dispersive Rayleigh wave in the underlying halfspace.

All methodologies are compared in figure 4. The dimensionless error is given in figure 5. The standard
methodology allows to capture the rail displacements using only 10 enrichments. Both the Galerkin and
Petrov-Galerkin methodology perform well, with slightly lower errors when using Petrov-Galerkin. The
minimal residual methodology does not converge and negligible gain in accuracy is made when adding
enrichments, either when using orthogonal or oblique projections. This can be caused by the increased ill-
conditioning due to the substitution of A by AHA. Moreover, computation times strongly increase due
to the increased number of terms in the Kronecker form. The convergence criterion based on the relative
contribution of the last enrichment strongly varies with the number of enrichments. The most stable result is
found for the PGD-PG algorithm, although not completely monotonic. The values for the minimal residual
strategies decrease with the number of enrichments although the solution does not converge, indicating that
the criterion does not properly identify convergence.

The same comparison is made for the 2.5D ballast track supported by a layer on a halfspace. Only the
results for the standard PGD methodology are depicted as the computation time for the minimal resiudal
methodology is prohibiting. Moreover, the methodology is not guaranteed to converge as was noted for
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(a) (b) (c)

(d) (e)

Figure 4: Logarithm of the modulus of the rail receptance for the ballast track on a homogeneous halfspace
as a function of frequency and dimensionless wavenumber using (a) the direct solution of the equilibrium
equations, the (b) PGD-G, (c) PGD-PG, (d) MinRes-G, and (e) MinRes-PG algorithm with 10 enrichments.

(a) (b)

Figure 5: (a) Dimensionless error ϵRu , and (b) relative contribution of the last enrichment for the ballast
track on a homogeneous halfspace for PGD-G (black solid line), PGD-PG (black dashed line), MinRes-G
(red solid line), and MinRes-PG (red dashed line) approach.

the ballast track on a homogeneous halfspace. Results for the rail receptance are depicted in figure 6 using
30 enrichments. This number is increased compared to the ballast track on a homogeneous halfspace as
the displacement pattern becomes more intricate due to the dispersive behaviour of the underlying soil.
The soil has multiple dispersion curves with different cut-on frequencies, corresponding to the zones of
maximum response in figure 6a. Frequency-wavenumber combinations showing high displacements are
well captured by both methodologies, however, the displacements in zones with low values seem disturbed.
The dimensionless error, given in figure 7, stagnates at around 0.13, after which additional enrichments only
provide small improvements. For the Petrov-Galerkin approach an increase in error is even observed. The
convergence criterion based on the relative contribution of the last enrichment is again most stable for the
PGD-PG algorithm. For the PGD-G algorithm, convergence can not be predicted based on the suggested
criterion due to the large variations.
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(a) (b) (c)

Figure 6: Logarithm of the modulus of the rail receptance for the ballast track on a layer on a halfspace
as a function of frequency and dimensionless wavenumber using (a) the direct solution of the equilibrium
equations, (b) the PGD-G, and (c) the PGD-PG algorithm with 30 enrichments.

(a) (b)

Figure 7: (a) Dimensionless error ϵRu , and (b) relative contribution of the last enrichment for the ballast track
on a layer on a halfspace for PGD-G (black solid line), and PGD-PG (black dashed line) approach.

4 Conclusion

This paper discusses the use of the Proper Generalized Decomposition for the prediction of railway induced
vibrations in 2.5D track models. This a priori model order reduction technique computes a separated repre-
sentation of the displacement field and permits the inclusion of additional parameters.

Four distinct PGD algorithms are defined and their use is first illustrated for a beam on a Winkler foundation.
All algorithms converge and the benefit of the Petrov-Galerkin over the Galerkin approach is clear, both
when using a standard PGD and minimal residual approach.

Results for a 2.5D ballast track are computed for both a homogeneous halfspace and a layer on a halfspace.
The non-separability of the soil stiffness, computed using a BEM, is circumvented by the use of a CPD.
The computation of a separable soil stiffness could be feasible using a PGD strategy and is subject for future
research. For the homogeneous halfspace the solution converges for the standard PGD and a satisfactory error
is found within a reasonable number of enrichments, both when using orthogonal and oblique projections.
The minimal residual algorithm does not converge and CPU time is strongly increased. For the layer on a
halfspace, the soil becomes dispersive, resulting in the need for more enrichments. The dimensionless error
stagnates at 0.13 indicating that the greedy PGD strategy no longer extracts new information.
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