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Abstract
Full-field modal shapes, identified from the high-speed camera measurement, offer local information of the
structural behavior and have been successfully used to identify a large number of localized updating param-
eters. The camera based full-field shapes are typically contaminated with noise. In the finite element model
updating procedure, the numerical response of the structure is compared with the measured data which are
unreliable due to the noise and possibly lead to incorrect parameter identification. In this research, the local
Signal-to-Noise Ratio (SNR) of the modal shape is investigated; two location specific weighting methods
are implemented and their effect on model updating is evaluated. It was found that with the appropriate
location-specific weights, the large number of localized parameters are successfully identified, and the local-
ized anomalies of the structure are detected despite the noisy modal shapes.

1 Introduction

The field of finite-element-model updating is well established and is still in active development. Friswell
et al. [1] researched finite-element-model updating in detail and classified it into the direct and sensitivity-
based methods. Recently, Zhu et al. [2] proposed a substructure-based sensitivity method to accelerate
the convergence of model updating. Rezaiee-Pajand et al. [3] presented an innovative, sensitivity-based
updating strategy using a combination of the modal kinetic energy and the modal strain energy. Girardi et
al. [4] proposed a numerical method for finding a global minimum of the cost function. Wan et al. [5] used
a global-sensitivity analysis to decide on the best parameters to update.

High-speed imaging has become a popular approach for both static and dynamic measurements because it
is a non-contact method and provides full-field response information. Lucas and Kanade [6] developed an
algorithm for tracking a pattern as it moves across the camera’s sensor. Peters et al. [7] used the approach
in the field of mechanics, where it is known as Digital Image Correlation (DIC). The 3D response of the
structure is identified using multiple synchronized high-speed cameras [8]; however, Gorjup et al. [9] showed
that, using frequency-domain triangulation, the 3D operational shapes of a linear, time-invariant system can
be identified using a single high-speed camera.

The use of high-speed-camera measurements in finite-element-model updating has the benefit of a large
number of degrees of freedom being measured simultaneously, which enables the identification of local
mode-shape features and the use of local correlation indicators. To achieve a spatial density of information
similar to a high-speed camera by using accelerometers can be time consuming and a large number of sensors
must be used, requiring sensors position optimization [10] and adding mass to the structure. One of the first
uses of high-speed cameras for model updating was by Wang et al. [11] who used Tchebichef moment
descriptors to describe modal shapes. Ngan et al. [12] used DIC measurements to investigate the Zernike
moment descriptors. Zanarini [13] compared the updating results when the experimental data are obtained
using high-speed cameras with 3D DIC algorithm, SLDV and ESPI. While Rohe et al. [14] successfully used
SLDV measurements in the updating procedure, Zanarini showed that the 3D DIC and ESPI approaches were
superior to SLDV. Recently, Cuadrado et al. [15] used the sensitivity approach to update the parameters of a
composite plate using a full-field vibration measurement.
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In this article, the use of three different weighting methods is researched and compared on a numerical case
study. Full research is presented in a published article by Zaletelj et al. [16].

2 Theoretical background

A short summery of the displacement identification, modal identification and finite element model updating
is given in this section.

2.1 Image-based displacement identification

A 2D digital image correlation (DIC) algorithm was used to identify the rigid translations of the selected
subsets. Each subset provided information for a single measurement point. With DIC, the cost function is
minimized, in our case:

S =
∑

x

∑

y

(
Iref(x, y)− I(x+∆x, y +∆y)

)2
, (1)

where Iref represents the intensities of the subset of pixels on the reference image and I on the current
image. ∆x and ∆y represent the identified displacements of the subset on the current image with respect to
the reference image in the horizontal and vertical directions, respectively.

2.2 Hybrid full-field experimental modal analysis

The Least-Squares Complex Frequency (LSCF) method [17] in combination with the Least-Squares Fre-
quency Domain (LSFD) method [18, 19] was used in this research to identify the modal parameters from the
identified displacements. Specifically, the hybrid method, combining the high-dynamic-range acceleration
measurement with the spatially dense high-speed-camera measurement, proposed by Javh et al. [20], was
used to identify modes even where the noise floor was above the usable signal. With the hybrid method,
the high-dynamic ćrange accelerometer measurement is used to identify the complex poles of the structure
(LSCF method):

accλr = −ζr ωr ± iωr

√
1− ζ2r . (2)

The low dynamic range, high spatial density data from the high-speed camera are then combined with the
identified poles to identify the high spatial density modal shapes (LSFD method). The LSCF and LSFD
methods are implemented in the open-source Python package pyEMA [21].

2.3 Finite element model updating - sensitivity based methods

To identify the parameters, θ, of a finite element model with the sensitivity-based (sometimes called iterative)
methods, the measured data, zm, is compared with the data obtained from the numerical simulation in the
j-th iteration, zj . The data vectors zm and zj usually contain the natural frequencies and modal shapes. In
each iteration j, new approximations of the unknown parameters, θj+1, are computed:

θj+1 = θj +
[
ST
j ·Wεε · Sj +Wθθ

]−1 · ST
j ·Wεε ·

(
zm − zj

)
, (3)

where Wεε is a diagonal matrix with reciprocal values of the variances of the measured data, Wθθ is a
diagonal matrix with reciprocal values of the estimated variances of the parameters and Sj is the sensitivity
matrix in the j-th iteration. When the number of updating parameters m is larger than the number of residuals
n, the updating parameters cannot be uniquely identified. The Tikhonov regularization [22] is used to obtain
the solution with the minimal change in updating parameters. In this research, noisy measurements are used
and location-specific weighting of the modal shapes is introduced by Eq. (3). All of the parameters were
given equal weight in Wθθ, chosen so that the Euclidean norm of Wθθ was equal to the Euclidean norm of
Wεε.
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Figure 1: a) normalized modal shape from dataset B and b) local Signal-to-Noise Ratio along the beam. A
moving average with a kernel size of 10 was used to compute the local SNR.

3 Location-specific weighting of noisy data

Eq. (3) enables weighting of individual elements of vector zm, the location-specific weighting of the modal
shapes was investigated. The basis for the location weighing is the fact that the SNR is not constant for the
whole modal shape; rather it is very low in the nodal Degrees Of Freedom (DOFs) and larger in the areas
with large deformation. The local SNR is shown in Fig. 1.

Three methods of modal shape weighting were compared in this research: unitary weighting, absolute
weighting and square weighting. With the unitary weighting, all locations were given equal weight, not
taking into account the low SNR at nodal DOFs:

wε,ϕi,j = w, j = 1 . . . nlocations (4)

With the absolute weighting, each location was weighted with the absolute value of the modal shape itself,
see Eq. (5), giving lower weight to the nodal DOFs.

wε,ϕi,j =
|ϕi,j |√∑nmodes

i=1

∑nlocations
k=1 ϕ2

i,k

, j = 1 . . . nlocations. (5)

The difference in weighting of the nodal DOFs and the DOFs with large deformation was increased by using
the square weighting, where the square of the modal shape was used as a weight:

wε,ϕi,j =
ϕ2
i,j√∑nmodes

i=1

∑nlocations
k=1 ϕ2

i,k

, j = 1 . . . nlocations (6)

The weights for all the eigenvalues and modal shapes were assembled in a diagonal weighting matrix:

Wεε = diag(wε,λ0 , wε,λ1 , ...,w
T
ε,ϕ0

,wT
ε,ϕ1

, ...) (7)

where wε,λi
is the weight of eigenvalue λi and wε,ϕi

is the vector weight of modal shape ϕi, computed with
Eq. (4), (5) or (6). The weight of eigenvalues wε,λi

were chosen as a Euclidean norm of ϕi, giving λi and
ϕi equal weight.
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Figure 2: Beam dimensions in the reference numerical model. Translational degrees of freedom for dataset
A and dataset B are presented.

4 Numerical case study

The research was carried out on the simulated data, where the real values of the model parameters are known,
enabling the direct comparison with the updated parameters. The measurement was simulated using the ref-
erence numerical model, created by modeling a beam (Fig. 2) with 999 Euler-Bernoulli finite elements [23].
The density of the material, ρ, for the reference model was 7400 kg/m3 and the Young’s modulus, E, was
180 GPa. To introduce a parameter variation, the Young’s modulus was reduced (36 GPa) for elements at
locations from 500 through 520. A free-free boundary condition was applied and no damping was included.

From the reference numerical model, two reference datasets with the first five eigenvalues and the associated
modal shapes (excluding rigid-body modes) were extracted, i.e., reference datasets A and B (Fig. 2). The
modal shapes in dataset A were generated in 6 translational Degrees Of Freedom (DOFs), to simulate the
spatially sparse accelerometer measurement. Modal shapes in dataset B were generated in 1000 translational
DOFs, simulating the spatially dense high-speed-camera measurement. The rotational DOFs were excluded
from the modal shapes. Normally distributed noise was added to the modal shapes of both datasets:

ϕ̂ = S+N, (8)

where ϕ̂ is the modal shape contaminated with noise, S is the modal shape without noise and N is the zero-
mean noise signal, which was generated to obtain the desired Signal-to-Noise Ratio (SNR). Tab. 1 shows the
SNRs used for the different modal shapes and datasets (dataset A was given a higher SNR than dataset B).

Table 1: Modal shape SNR [dB] for datasets A and B.

Mode nr. A (6 DOF) B (1000 DOF)
1 70 30
2 67 27
3 64 24
4 61 21
5 58 18

The finite-element model was updated using the sensitivity approach, see Sec. 2.3, and the Young’s moduli
of all the elements were chosen as the updating parameters. In the updating procedure, the eigenvalue and
modal-shape residuals were minimized. The eigenvalue residuals were computed as:

zλ,i =
λi − λ̂i

λ̂i

(9)
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Figure 3: Young modulus along the beam as a result of different weighting methods. a) unitary, b) absolute
and c) square weighting.
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Figure 4: Comparison of normalized eigenvalues before and after updating with unitary weighting (dataset
A) and square weighting (dataset B).

where λi is the i-th numerical eigenvalue and λ̂i is the corresponding eigenvalue from the reference dataset.
The modal-shapes residuals were computed location-by-location:

zϕ,i,j =
ϕi,j − ϕ̂i,j√∑nmodes

i=1

∑nlocations
k=1 ϕ̂2

i,k

, j = 1 . . . nlocations (10)

Each of the three weighting methods were used to update the finite-element model. The results in Fig. 3
show that the unitary weighting is not appropriate for the low-dynamic-range data in dataset B, since the
updated Young’s moduli are far from physically meaningful. For dataset A, the unitary weighting performs
best; however, for dataset B, the best agreement between the updated and true values of the Young’s moduli
was achieved using the square weighting, see Fig. 3c.

The updated eigenvalues, normalized to the reference values, for the best-performing weighting (dataset A
with unitary weighting and dataset B with square weighting), are compared in Fig. 4. It is clear that the
updated eigenvalues, along with the ones not included in the updating process, are closer to the reference
values when dataset B was used, even with the lower SNR of the modal shapes.
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5 Conclusions

This study researches different types of modal shape weighting in the finite element model updating proce-
dure. The location-specific weights were chosen based on the fact that the SNR is not constant throughout
the structure, but is low at the nodal locations. The unitary, absolute and square weighting methods were
researched on the numerical experiment, where the true values of the parameters are known. It was found,
that for the high-spatial density modal shapes with large noise amplitude applied (low SNR), the square
weighting produces the best results. For the low-spatial density modal shapes with high SNR, the unitary
weighting was found to produce better results. This research shows, that for model updating with the modal
data obtained from the high-speed camera, the square weighting should be used to improve the identification
of the finite-element model parameters.
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