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Abstract
The balancing of flexible rotor-bearing systems is one of the most important challenges in the use of high-
speed machinery. Since traditional balancing methods require multiple test runs, which are costly and time-
consuming, the focus of modern balancing methods is to replace these with simulations. For this reason, two
flexible rotor balancing methods based on the Numerical Assembly Technique (NAT) have been proposed by
the present authors in recent years. The advantages of NAT are that it leads to quasi-analytical solutions and
is very computationally efficient. In this paper, the methods are applied on a testbed consisting of an axial
symmetric rotor running on anisotropic supports. The mode shapes, eigenvalues and unbalance responses
are measured and compared to values calculated with NAT. The system is balanced and the reduction of
vibration is determined. The results show that the procedure can be applied effectively.

1 Introduction

Unbalance is the main cause of rotor vibration, which reduces the life span of rotor-bearing systems and
might be harmful to the surrounding. If the spin speed exceeds 70% of the first critical speed, the system
is considered flexible and flexible balancing methods have to be used to reduce vibrations [1]. Traditional
flexible balancing methods are gathered in two main groups: modal balancing methods and influence co-
efficient methods [2]. Both approaches can be significantly improved with a suitable rotor-dynamic model
of the rotor-bearing system. For modal balancing methods [3], it is very advantageous to know the critical
speeds and mode shapes of the system beforehand. This allows for the perfect placement of modal balancing
weights, which minimizes the vibration of one mode without influencing any other mode. In the best-case
scenario, if each critical speed can be surpassed safely before balancing and the rotor model is completely
accurate, the system can be balanced with data from a single measurement run through all critical speeds [4].
Influence Coefficient methods [5] can be applied completely empirical and lead to good results as long as the
rotor-bearings system is linear. However, the empirical approach requires a great number of test runs, which
are expensive and time-consuming. On the other hand, if the influence coefficients are calculated with an
accurate rotor-dynamic model these test runs can be avoided and only a measurement run to determine the
initial unbalance of the rotor is necessary [6].
In this paper, the Numerical Assembly Technique (NAT) is applied to calculate eigenvalues, influence coef-
ficients and mode shapes to allow the balancing of a rotor-bearing system.

NAT is an efficient, quasi-analytic method to calculate the steady-state harmonic response, modes and in-
fluence coefficients of rotor-bearing systems. In 1999, NAT was introduced by Wu and Chou as a method
to compute the harmonic vibrations of one-dimensional structures [7, 8]. The method has been extended to
additional applications in mechanics, especially in the field of rotor dynamics in subsequent years. Chen
determined the natural frequencies of uniform beams using continuum models [9, 10, 11]. Lin analyzed
the effects of multiple lumped masses, multiple-pinned supports, and rotary inertias on the calculation of
Euler–Bernoulli beams [12, 13, 14]. In [15], these approaches were applied to the Timoshenko beam the-
ory, and the effect of the slenderness ratio and the shear coefficient was investigated. Later Lin extended
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both approaches [16, 17]. Yesilce examined the effects of axial forces on Timoshenko and Reddy-Bickford
beams [18, 19, 20]. Later, Wu applied the method to rotating systems, determined the forward and backward
whirling speeds and included gyroscopic effects [21]. Vaz analyzed the effect of various material and ge-
ometric discontinuities [22] and Farghaly examined Timoshenko beams on elastic supports [23]. In recent
years, Klanner et al. introduced distributed loading [24], unbalance [25], and fractional derivative damping
[26] in the NAT scheme. He also showed that NAT leads to a reduction of computational time by a factor of
ten compared to FEM [25].

Recently, NAT has been applied to balance rotor-bearing systems with flexible behaviour. In [27], Quinz
et al. proposed a method for the modal balancing of isotropic rotor-bearing systems using NAT. In the fol-
lowing year, another method was proposed, which is capable of balancing anisotropic rotor-bearing systems
supported on fluid film bearings through calculated influence coefficients [28]. However, both methods were
only applied to numerical simulations and there are no reports of systematic application of these balancing
procedures in real-world test cases. The main aim of this work is to verify the feasibility of balancing meth-
ods based on NAT experimentally. For that, simulated unbalance responses are compared to measured data
and a test case is balanced with the proposed method.

The remainder of this paper is organized as follows: Section 2 describes the simulation and balancing meth-
ods. Section 3 presents the test configuration and the obtained results. Section 4 discusses possible additions
to the proposed method. Finally, Section 5 concludes the paper.

2 Methods

In this section, the applied simulation and balancing methods are described and the way in which those
interact is explained.

2.1 Numerical Assembly Technique

The description of the Numerical Assembly Technique is adapted from the authors’ previous work. For a
more detailed description, the reader is referred to the papers by Klanner et. al. and Quinz et. al. [25, 26, 27,
28]. In Figure 1, the general rotor problem is shown.

Figure 1: General rotor problem [28].

The space fixed coordinate system Oxyz is chosen so that Oz passes the undeflected axis of the rotor in
its bearings. Ox and Oy are perpendicular to each other and transverse to Oz. For NAT, the rotor-bearing
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system is divided into N stations and M = N − 1 segments. Stations represent disks, bearings, steps,
and the ends of the rotor and are noted by the index in brackets and counted from [(1), (2), ..., (i), ..., (N)].
Segments represent the cylindrical elements between the stations and are counted from [1, 2, ..., ℓ, ...,M ].
The coordinate zℓ measures the distance in z-direction starting at the beginning of segment ℓ. The rotor is
supported on an arbitrary amount of bearings modeled as anisotropic springs and dampers including cross-
coupling terms and rotates at a constant spin speed Ω. The spring and damping coefficients may be spin speed
dependent for example in the case of fluid film bearings. Several disks are mounted on the shaft. Each disk
has a mass m(i), a mass moment of inertia about the x- and y-axis Θ(i)

t , a mass moment of inertia about the z-
axis Θ(i)

p , an amount of eccentricity ε(i), and an angular position of eccentricity β(i). Segments are described
by the Young’s modulus E, density ρℓ, area of the cross-section Aℓ and its diametric moment of area of the
cross-section about the x- and y-axis Iℓ. The segments may also have a distributed unbalance defined by
εℓ(z) and βℓ(z) or be subject to external distributed forces q•. The rotor segments are modeled according to
the Rayleigh beam theory, which has the same assumption as the Euler–Bernoulli beam theory, but includes
rotary inertias and gyroscopic effects [29]. The state of the rotor is represented by the displacements ux and
uy, the rotations of the cross-section φx and φy, the bending moments Mx and My and the shear forces Qx

and Qy, which are all gathered in the solution vector x⃗. The equilibrium conditions lead to the equations of
motion for any segment (index ℓ)

EℓIℓ
∂4uxℓ(zℓ, t)

∂z4ℓ
− ρℓIℓ

∂4uxℓ(zℓ, t)

∂z2ℓ ∂t
2

+ ρℓAℓ
∂2uxℓ(zℓ, t)

∂t2
− 2ρℓIℓΩ

∂3uyℓ(zℓ, t)

∂t∂z2ℓ
=

qx(zℓ, t) + ρℓAℓε(zℓ)Ω
2 cos(Ωt+ β(zℓ)),

(1a)

EℓIℓ
∂4uyℓ(zℓ, t)

∂z4ℓ
− ρℓIℓ

∂4uyℓ(zℓ, t)

∂z2ℓ ∂t
2

+ ρℓAℓ
∂2uyℓ(zℓ, t)

∂t2
+ 2ρℓIℓΩ

∂3uxℓ(zℓ, t)

∂t∂z2ℓ
=

qy(zℓ, t) + ρℓAℓε(zℓ)Ω
2 sin(Ωt+ β(zℓ)).

(1b)

The rotations of the cross-section are defined by

φyℓ(zℓ, t) =
∂uxℓ(zℓ, t)

∂zℓ
, (2a)

φxℓ(zℓ, t) = −∂uyℓ(zℓ, t)

∂zℓ
, (2b)

the bending moments are defined by

Myℓ(zℓ, t) = EℓIℓ
∂2uxℓ(zℓ, t)

∂z2ℓ
, (3a)

Mxℓ(zℓ, t) = −EℓIℓ
∂2uyℓ(zℓ, t)

∂z2ℓ
, (3b)

and the shear forces can be computed by

Qxℓ(zℓ, t) =ρℓIℓ
∂3uxℓ(zℓ, t)

∂t2∂zℓ
+ 2ρℓIℓΩ

∂2uyℓ(zℓ, t)

∂t∂zℓ
− EℓIℓ

∂3uxℓ(zℓ, t)

∂z3ℓ
, (4a)

Qyℓ(zℓ, t) =ρℓIℓ
∂3uyℓ(zℓ, t)

∂t2∂zℓ
− 2ρℓIℓΩ

∂2uxℓ(zℓ, t)

∂t∂zℓ
− EℓIℓ

∂3uyℓ(zℓ, t)

∂z3ℓ
. (4b)

Assuming a solution of the form

uxℓ(zℓ, t) = ũ+xℓ(zℓ)e
iωt + ũ−xℓ(zℓ)e

−iωt, (5a)

uyℓ(zℓ, t) = ũ+yℓ(zℓ)e
iωt + ũ−yℓ(zℓ)e

−iωt, (5b)
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leads to four ordinary differential equations, where ω is the complex eigenvalue. The solutions of u+•ℓ(zℓ)
and u−•ℓ(zℓ) have to be complex conjugated to yield a real solutions for u•ℓ(zℓ, t). Therefore, the differential
equations for u+•ℓ(zℓ) and u−•ℓ(zℓ) are completely decoupled, and only two of these equations

∂4ũ+xℓ(zℓ)

∂z4ℓ
+ ρℓω

2∂
2ũ+xℓ(zℓ)

Eℓ∂z
2
ℓ

− ρℓAℓω
2

EℓIℓ
ũ+xℓ(zℓ)− 2iρℓΩω

∂2ũ+yℓ(zℓ)

Eℓ∂z
2
ℓ

=
ρℓAℓΩ

2

2EℓIℓ
ε(zℓ)e

iβ(zℓ),

(6a)

∂4ũ+yℓ(zℓ)

∂z4ℓ
+ ρℓω

2
∂2ũ+yℓ(z)

Eℓ∂z
2
ℓ

− ρℓAℓω
2

EℓIℓ
ũ+yℓ(zℓ) + 2iρℓΩω

∂2ũ+xℓ(zℓ)

Eℓ∂z
2
ℓ

= − iρℓAℓΩ
2

2EℓIℓ
ε(zℓ)e

iβ(zℓ),

(6b)

are sufficient to solve the system of equations. If steady-state vibrations due to unbalance are analyzed, it
is apparent that Ω = ω. External distributed loadings q• = 0 can also be neglected in this case. The state
within a rotor segment is defined by the matrix equation

x⃗hℓ(zℓ) = B
ℓ
(zℓ)c⃗ℓ, (7)

where x⃗hℓ is the homogeneous solution vector, B
ℓ

is the state variable matrix, and c⃗ℓ is a vector of arbitrary
constants.

The total solution vector of a rotor segment consists of the homogeneous and the particular solution x⃗ℓ(zℓ) =
x⃗hℓ(zℓ)+ x⃗pℓ(zℓ). The particular solution depends on the unbalance, which can be considered either as point
masses or as a distribution function. The state variable matrices of every station are assembled with the
boundary and interface conditions into a system of linear equations

Ac⃗ = b⃗, (8)

where A is the system matrix, which depends only on the concentrated elements at the stations. The right-
hand side vector b⃗ also depends on the unbalance. The unknown constants c⃗ are the solution of the system of
linear equations, which defines the state variables of the whole rotor.

2.2 Modal balancing method

Modal balancing methods [30] allow progressively balancing a rotor-bearing system in the vicinity of critical
speeds so that the modal components of unbalance are corrected without influencing already balanced modes.
To achieve that, a modal matrix is needed, which consists of the relations of displacements of the rotor at
each critical speed and each measure position. The modal matrix can either be measured, which is costly and
time-consuming, approximated from previous measurements or calculated with an accurate rotor dynamic
model. In the proposed method, the eigenvalues and the modal matrix are determined using NAT so that no
trial runs are necessary and the system can be balanced with a single measurement run through all relevant
critical speeds. In practice, it is often impossible to reach the information zones near the critical speeds with
the unbalanced system so that an iterative approach is necessary [31].
For a detailed description of the way modal balancing methods work in conjuncture with NAT, the reader is
referred to [27].

2.3 Influence coefficient method

Influence coefficient methods determine the ratio of displacements to unbalance forces and use this infor-
mation to balance rotor-bearing systems. The advantage of these methods is that it is applicable to every
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linear elastic rotor-bearing system and is not limited to lightly damped systems like modal balancing meth-
ods. Classical influence coefficient methods require many trial runs. This is avoided when the influence
coefficients are calculated with an accurate rotor-dynamic model like NAT. Influence coefficients αik(Ω) are
defined as

αik(Ω) =
xi(Ω)

Uk
, (9)

where xi(Ω) is the displacement at position i caused by an unbalance Uk at position k. The influence
coefficients of all combinations of unbalance planes k and measurement planes i are calculated and gathered
in the influence coefficient matrix α

x⃗ = αU⃗, (10)

where x⃗ are the displacements of the rotor-bearing system caused by the addition of test weights and U⃗ is
the unbalance vector. By inverting the influence coefficient matrix the initial unbalance is determined from
the initial unbalance response

U⃗c = −α−1x⃗0, (11)

where U⃗c are the correction unbalances, and x⃗0 are the displacements of the rotor bearings system without test
weights. The influence coefficient method can also include surplus information of additional measurement
planes and spin speeds with the least-squares method [32].

3 Results

In this section, the setup and results of the practical test are described.

3.1 Testbed

In Figure 2, the rotor dynamic testbed of the Institute of Mechanic of the Graz University of Technology is
shown. It consists of an elastic shaft with a maximal diameter of 15 mm, on which an arbitrary amount of
disks can be mounted and which is supported on two roller bearings. The bearing housings are anisotropic
with an anisotropy coefficient of 0.36986. The rotor-bearing system is excited by an electrical motor with a
power of 7 kW and a maximum spin speed of 400 Hz. The unbalance response is measured with two triaxial
acceleration sensors and four laser displacement measurement systems with an accuracy of 0.025 µm. The
phase displacement is determined with an inductive sensor. The shaft is secured by a blast protection and
two safety bearings, which allow for a maximal displacement of 1.5 mm.
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Figure 2: Rotor dynamic testbed (without blast protection.)

All calculations are performed on an Intel® CoreTM i7-8700 CPU with 3.2 GHz running on a Windows 10
operating system using MATLABTM version R2019a.

3.2 Modelling

For this paper, four disks of different weights are mounted on the rotor. The setup of the rotor-bearing system
is shown in Figure 3.
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Figure 3: Configuration of the testbed

The system is modelled with NAT by the station parameters listed in Table 1. The segments are modelled
with a Young’s modulus of 2.19× 1011N/m2 and a density of 7700 kg/m3. The bearing parameters of this
testbed were determined in [33].
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Table 1: Stations of the NAT simulation

z m Θt Θp kxx kyy dxx dyy
m kg kgm2 kgm2 N/m N/m Ns/m Ns/m
0 0 0 0 0 0 0 0

0.008 0 0 0 2.8254× 108 1.2997× 108 80 80
0.097 0.1351 1.3418× 10−5 2.0398× 10−5 0 0 0 0
0.268 2.02 0.0015 0.0028 0 0 0 0
0.438 0.1351 1.3418× 10−5 2.0398× 10−5 0 0 0 0
0.574 0 0 0 2.8254× 108 1.2997× 108 80 80
0.585 0.6471 2.0322× 10−4 3.4134× 10−4 0 0 0 0
0.596 0 0 0 0 0 0 0

3.3 Balancing

The eigenvalues are determined by applying a recursive search algorithm on the system matrix of NAT.
The first two eigenfrequencies are calculated within 0.60541 s and are 43.1089 Hz (backward whirling) and
43.3546 Hz (forward whirling). Detailed descriptions of the way eigenvalues are computed are found in [27]
and [28]. Due to the bow of the shaft, the central disk has an unbalance equivalent to 297.5 g mm at the
60° position. The amplitude of displacement at the central disk at 35 Hz is measured to be 0.30698 mm.
The result has to be corrected by the bow of the shaft and the unroundness of the disk, which have been
determined at minimal spin speed to be 0.13 mm. Therefore, the excitation caused by unbalance is 0.17698
mm. For comparison, the displacement at the same position and spin speed with the known unbalance would
be calculated with NAT to be 0.22211 mm. Using influence coefficients calculated with NAT, a balancing
weight of 238.97 g mm at 240.4◦ is determined, within a computation time of 0.15432 s. Mounting this
balancing weight causes a significant reduction of vibration shown in Figure 4. For the balanced system,
a reduction of the vibration amplitude of 76.96% has been determined, which corresponds to a residual
unbalance of 68.55 g mm. The measurement of the unbalanced vibration has been stopped at 42 Hz since
an increase of the spin speed resulted in an amplitude above 1.5 mm and therefore rubbing at the safety
bearings.

Table 2: Comparison of calculation to measurements

z ωkrit Amplitude Correction unbalance Balancing position
measured 45.5 0.17699 mm 297.5 g mm 240◦

calculated 43.4 0.22211 mm 238.97 g 240.4◦

DYNAMICS OF ROTATING MACHINERY 1548



10 20 30 40 50
0

0.5

1

1.5

Spin speed Ω in Hz

D
is

pl
ac

em
en

tu
x

in
m

m

unbalanced
balanced

1Figure 4: Balancing success

Although modal balancing is not necessary to balance a single mode, the mode shape of the first forward
whirling mode is calculated with NAT and compared with measurements. As is seen in Figure 5 and Table
3, calculation and measurement are in good agreement.

Figure 5: First mode shape: calculation in blue, measurement in red
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Table 3: Dimensionless first mode shape

z = 0.097m z = 0.268m z = 0.438m
ux uy ux uy ux uy

measured 0.4615 0.5462 0.8846 1 0.5380 0.50923
calculated 0.4622 0.4964 0.9315 1 0.4733 0.5085

Additional measurement data of this rotor configuration are found in [33].

4 Discussion

The proposed simulation method leads to a good approximation of the rotor behaviour and the system was
successfully balanced. Differences between simulation and measurement are - besides inevitable measure-
ment errors - caused by rotor dynamic phenomena which are not yet considered for this proof of concept.
Effects already developed for NAT, which can easily be included are:

• Foundation influence: The proposed method can take multiple types of bearings like roller bearings
or fluid film bearings into account. The effects of the bearing shield, bearing housing and foundation
of the rotor-bearing system are neglected. Prem et al. [34] already developed a method to calculate
modal masses and stiffness of the foundation by combining NAT with the Polynomial Chaos Kriging
method. To unite this procedure with the proposed balancing approach might be useful for application
with significant foundation influence.

• Shear forces: The Rayleigh beam theory is frequently used in rotor dynamic applications since it takes
into account most rotor dynamic effects while still being numerically efficient. The Timoshenko beam
theory also includes shear forces and is, therefore, more accurate at higher spin speeds. For this paper,
the spin speeds of the experiments were low enough, that the differences between the beam theories
are negligible.

• Internal damping: In many technical applications external damping far exceeds internal damping to
avoid the destabilising effects of internal damping at supercritical speeds [35]. For systems without
added external damping, the inclusion of the effects of internal damping may be useful. Methods
to consider or determine fractional derivative damping parameters with NAT have been presented in
[36, 37, 26].

An effect that is not yet included, but might be a useful addition to NAT, is:

• Residual bow: As measurements at low spin speeds show, the shaft of the test rotor is bent even without
applied centrifugal forces. This effect influences the amplitude of vibration, depending on the angle
between the direction of the bow and the unbalance response. Modal balancing of flexible rotors with
bow using FEM has been performed by Deepthikumar et. al. [38].

Since the proof of concept was successful, the focus of further research is the extension of the proposed
balancing technique and its application on more complex test cases.

5 Conclusion

In this paper, the feasibility of balancing flexible rotors using the Numerical Assembly Technique has been
studied on a testbed. The method takes disks, a stepped shaft, anisotropic bearings and rotor dynamic effects
like gyroscopy and rotary inertias into account. Simulation and measurement data for the eigenfrequencies,
mode shapes and unbalance response are in good agreement. NAT is numerically efficient as the eigenvalues
and the influence coefficients were computed in less than a second. The rotor-bearing system was success-
fully balanced with a reduction of vibration of 76.96%. After balancing, supercritical speeds were reached
safely. The research indicates that the proposed balancing approach can be applied effectively.
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