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Abstract
This article tackles sensor selection for the identification of the loads acting on a wind turbine pitch bear-
ing. Virtual sensing is used to estimate those loads, by combining measurements from strain gauges and
accelerometers at practical locations with a reduced-order finite element model of the system. This article
proposes to work within an Augmented Kalman Filtering (AKF) framework which allows to analytically de-
rive the asymptotic uncertainty on the estimation. This provides a good metric for the performance of a given
sensor set and a good basis for the objective function for the sensor selection problem. This optimization
problem is combinatorial, with discrete decision variables and a black-box objective function. To approach
optimality, a large number of minimal sensor sets are evaluated and the best performing ones are then com-
bined and pruned to obtain an optimized sensor set. The presented approach outperforms hand-picked sensor
sets using typical heuristics while remaining consistent with highly excited regions around the pitch bearing.

1 Introduction

This article tackles sensor selection for the identification of the loads acting on a wind turbine pitch bearing.
Wind turbines are playing a key role in the transition towards renewable energy sources, and are becoming
more and more attractive in terms of return on investment as they scale up in size and nominal power.
This scaling up poses new challenges for all wind turbine components (structure, blades, electromechanical
drivetrain, ...) and at all stages of their life (manufacturing, resistance to peak loads as well as to wear and
fatigue, maintenance, ...).

As a result, little experimental data is available for the combination of new designs and materials that are
being deployed at larger and larger scales. This is a first motivation for sensorization and in particular for load
identification of wind turbine components, as the data collected during operation can help better understand
the current generations and improve the future ones [1].

Optimizing the maintenance of wind turbines or, more globally, of wind farms, is also a key ingredient to
attain a unit energy price competitive with other energy sources, and this is a second motivation for applying
load identification and, in a wider sense, condition monitoring to this use-case. This is because wind turbines
mainly operate in harsh, remote environments (offshore, wind swept plains, in presence of humidity, sand
and salt, ...) and require expensive techniques and equipment for access. Downtime is costly and complete
failure is catastrophic. As a result, predictive maintenance is essential and must be fully integrated in the
operation of a wind farm. This again requires data collection and, more widely, condition monitoring [2, 3].

This paper focuses on a wind turbine pitch bearing, which connects a blade to the rotor and allows it to
rotate about its longitudinal axis to change its pitch, i.e. adjust the drag and lift of the blade to control the
rotation speed and harnessed wind power. Due to their position in the load path, pitch bearings are subject
to harsh cyclic and non-cyclic loads, due to the weight and inertia of the blade itself as it rotates, and to the
lift and drag forces generated by the wind. Bearings are omnipresent in a wind turbine as well as in rotating
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machinery in general, and bearing condition monitoring is an active research topic in academia and industry
with very concrete demands and applications [4, 5]. In wind turbines, bearing condition monitoring is of
particular interest for the reasons presented above in this introduction [6]. Load estimation constitutes a first
step towards that broader goal and is the topic of this article.

Direct measurement of the load(s) acting on a mechanical structure is not desirable in many applications.
Installing transducers in the load path is often impractical or too expensive and is intrusive because it affects
the response of the sensorized system to the measured load(s). These considerations weigh even heavier for
in-service data collection on a large number of deployed systems. In the case of bearings, mounting force
cells or strain gauges on or close to the raceways and rolling elements is close to impossible, even though
in situ strain measurement using fiber Braggs gratings has been suggested [7, 8]. As a result, indirect load
identification is the predominant state of practice and is considered in this article.

More generally, virtual sensing allows to estimate quantities that are too costly or difficult to directly mea-
sure, by combining measurements from more practical sensors and locations with models of the system in
question. In the case of load estimation, this involves solving an inverse problem to obtain input forces
starting from output strains, displacements or accelerations at given locations on the structure. This is not
straightforward, and multiple approaches have been proposed in the time or frequency-domain [9, 10, 11].
This article considers load estimation using an Augmented Kalman Filter (AKF) [12, 13], which is the
most commonly used estimation algorithm for this application. The motivation behind this choice and some
specifics on the implementation are detailed further in section 2. For now, this introduction concludes by
presenting the problem of sensor selection for virtual sensing, and why this topic on its own is of particular
interest.

The key feature of virtual sensing is that it allows to use indirect measurements with relative freedom on the
position of the sensors. In turn, this makes the selection and placement of these sensors less obvious as more
decision criteria can be taken into account. Because estimation techniques typically do not provide a forward,
explicit relation from measurements to the estimated quantities, and instead rely on (recursive) filtering or
on optimization over a certain horizon, it is rarely possible to rigorously derive hard and fast rules on sensor
selection for a given virtual sensing use-case. Despite those considerations, sensor selection is crucial to the
performance and cost of a virtual sensing solution. Typically, the design and performance of the estimator
depends on the choice of sensors while the sensors are chosen based on estimator performance. Because of
this circular dependency, an initial suggestion of sensor set made independently of any existing estimator is
valuable, and has been the subject of multiple investigations in the past [14, 15, 16, 17, 18, 19, 20]. This
is why the selection of sensors for the use-case of load estimation of a wind turbine pitch bearing is treated
here as its own topic.

This article is organized as follows. Section 2 motivates the usage of Kalman Filtering as a framework for
sensor selection, briefly introduces Augmented Kalman Filtering and the associated notations, and concludes
with the derivation of the covariance matrix P∞ of the asymptotic uncertainty on the state estimation, which
is used to quantify the performance of a given sensor set. Section 3 presents the procedure to perform the
actual sensor selection, based on the above-mentioned performance metric. Section 4 then introduces the
use-case on which the proposed sensor selection method is applied, along with the associated models which
are inputs to the sensor selection. This leads to section 5 which presents sensor selection results and their
performance, with some comparisons to heuristics-based sensor sets. Finally, section 6 concludes this article
by drawing the key lessons from this work and by giving some outlooks on future research.

2 Kalman Filtering as a framework for sensor selection

This article works within an AKF framework to predict the performance of a given sensor set. This choice
has been made for three reasons:

1. KF-based estimation techniques are strongly established for the considered use-case and for mecha-
tronics applications in general, and they are very widely used, which makes this work relevant to
current practices.
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2. A KF is the optimal estimator for Linear Time-Invariant (LTI) systems under the assumptions of un-
biased additive gaussian noises on the system dynamics and measurements. While these assumptions
are often reasonable in mechanical applications, they are not always satisfied and many variations on
the core ideas of Kalman Filtering have been demonstrated, such as Extended Kalman Filters (EKF)
[21], Unscented Kalman Filters (UKF) [22], Dual Kalman Filters (DKF) [23], and more ad hoc KF-
based estimators that handle heavily non-linear and/or time-varying models [16]. However, the fact
that optimality might not be guaranteed in realistic use-cases is not a concern for this work because a
KF is only used here to derive the uncertainties on the estimated signals resulting from a given choice
of sensors, and not to perform the actual estimation itself. Independently of the non-idealities of the
system in question and of the eventual choice of estimation strategy, these derived uncertainties pro-
vide a strong lower-bound on the uncertainties that can be achieved in practice (i.e. an upper-bound
on the estimation performance), and as a result form a good criteria for sensor selection [21].

3. Only under the assumptions guaranteeing KF optimality is it possible to theoretically derive estimation
uncertainties and asymptotic estimator quantities using Riccati’s equation [24] instead of resorting to
simulations and/or actually running the proposed estimator. This is crucial for sensor selection as it
allows to quickly evaluate many sensor sets. This proposed evaluation method is faster than if it was
required to actually run an estimator on training datasets. Moreover, it is based only on the model of
the system in question and the positions and accuracies of the individual sensors. In turn, the resulting
performance metric is valid in all operating conditions where the model remains accurate, making it a
more robust performance metric than using some representative estimation scenario(s).

2.1 Augmented Kalman Filtering and associated notations

This article will not present the detailed derivations of an (A)(E)KF as this topic is very well covered in
literature [21, 24, 13, 14], but the notational conventions are introduced below. The underlying dynamical
system is modeled in the continuous time using the traditional set of equations (1), where the system matrices
may potentially be the result of local linearization around the current state x.

{
ẋ(t) = Ax(t) +Bu(t) +w(t), w ∼ N (0,Q)

y(t) = Hx(t) +Du(t) + v(t), v ∼ N (0,R)
(1)

In (1), A and B describe the dynamics of the system, H and D how the system is observed (i.e. types and
positions of sensors), and Q and R the uncertainties on the input and modeled dynamics (through w(t))
and on the measurements (through v(t)), respectively. Discretization in time is not considered here as it is
not necessary for predicting the asymptotic estimation uncertainty resulting from a sensor set, which is the
objective of this work. This keeps derivations cleaner and more general.

To perform input estimation and obtain a model that is amenable to Augmented Kalman Filtering, the system
state x(t) is augmented with the input u(t), resulting in the augmented state-space model (2).





[
ẋ(t)
u̇(t)

]
=

[
A B
0 0

] [
x(t)
u(t)

]
+

[
w(t)
wu(t)

]

y(t) =
[
H D

] [x(t)
u(t)

]
+ v(t)

(2)

which is condensed using the following substitutions:

x∗ =
[
x
u

]
, A∗ =

[
A B
0 0

]
, w∗ =

[
w
wu

]
w∗ ∼ N (0,Q∗), H∗ =

[
H D

]

Matrices A∗ and H∗ are used as the state prediction matrix and measurement matrix of the AKF, respectively.

The final ingredients required to predict the asymptotic estimation uncertainty of the corresponding AKF
are the respective covariance matrices for the measurement noise R and the process noise Q∗. R is trivial
as it is a diagonal matrix of the respective noises of the sensors, which can be based on available sensor
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specifications or on experimental data. Q∗ is given some attention here, as this article focuses mostly on
manipulating those covariance matrices to the predict estimation uncertainty.

The Q matrix in model (1) describes the uncertainties on the process model itself (matrices A and B) as well
as on the known input u(t). For estimation of only the states, based on a known input signal, this Q matrix
is typically the most challenging tuning parameter of the KF. For joint state-input estimation using an AKF,
this challenge is slightly different, and some assumptions must be made.

The first and fundamental assumption behind an AKF is to model the dynamics of the unknown input in (2)
as a Gaussian random walk associated with a covariance matrix Quu, as indicated in (3) [21].

wu ∼ N (0,Quu) (3)

The second assumption is that Qmodel ≪ Quu. This is required for input estimation to be feasible and ensure
that the measurement innovation — the difference between the actual measurement y(t) and the predicted
measurement ŷ(t) — results in an update in the estimated input and is not wrongly attributed to modeling
uncertainties.

This finally results in expression (4) for Q∗.

Q∗ =
[
0 0
0 Quu

]
(4)

This structure of Q∗ is practical in the sense that it eliminates the need for tuning Qmodel, but tuning Quu

remains a challenge, especially as modelling the unknown input u(t) as a gaussian random walk is a strong
assumption that rarely completely fits the actual input. As a result, tuning Quu is a compromise between the
response delay of the estimator and its sensitivity to noise. Quu must be chosen based on which aspects of
the input u(t) must be captured by the estimator [15].

With these models and corresponding matrices at hand, the covariance matrix P∞ of the asymptotic uncer-
tainty on the estimated state can be derived. This is the topic of the next subsection.

2.2 Performance of a sensor set within this framework

Under the KF assumptions where optimality is guaranteed, the covariance matrix P∞ of the asymptotic
uncertainty on the estimated state is given by the solution to the Continuous Algebraic Riccati Equation
(CARE) [24].

A∗P∞ +P∞A∗T −P∞HTR−1HP∞ +Q∗ = 0 (5)

The continuous equation is used here because time-discretization is not necessary for sensor selection.

As proposed above, this theoretical value of P∞ is used to quantify the performance of a given sensor set.
This choice allows to simultaneously account for the signal to noise ratio (SNR) of the sensors and for how
they affect the observability of the system [20, 14].

P∞ is superior to sensor SNR as a performance metric because it takes into account how the positions and
types of sensors impact the information they provide about the states of the system. On the contrary, the
practice of selecting sensors purely based on highest SNR can lead to sensor sets that are redundant and/or
leave some states unobservable or poorly observable.

P∞ is also superior to some sort of observability measure as a performance metric because it takes into ac-
count the SNR of each sensor, and because it quantifies in a more natural and rigorous way how the positions
and types of sensors impact the information they provide about the states of the system. Observability of the
system has been previously proposed as a sensor selection criterion, for example using the Popov-Belevitch-
Hautus (PBH) test [15, 20]. Since observability is a fundamentally binary characteristic, workarounds must
be used to derive a non-binary metric of performance from it, such as the condition number of the PBH
matrix which quantifies how close it is to being rank-deficient. Still, this is contrived compared to using
P∞ which naturally quantifies the quality of the information provided by the sensors about the states. This
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quantification is more rigorous and nuanced as it provides the expected uncertainty per state. Finally, as
demonstrated in [14, 15], using the PBH criterion can lead to some sensor types being incorrectly favored if
unit scaling and SNR are not properly taken into account. This pitfall is inherently avoided by using P∞ as
a performance metric.

Quantifying the performance of a given sensor set based on P∞ is the first ingredient towards sensor selec-
tion. The second and final ingredient is a selection algorithm to explore the space of feasible sensors and
arrive at a close to optimal sensor set.

3 Sensor selection algorithm

Sensor selection is a hard optimization problem outside of trivial cases. Because this work uses FE-based
models, the decision variables are the nodes at which sensors are placed and the type(s) of sensor(s) per
selected node. This makes the optimization problem purely combinatorial with a very large set of discretized
positions (i.e. nodes) at which sensors are allowed to be placed. Moreover, it has a black-box objective
function since no explicit expression can be derived of P∞ in function of the decision variables (i.e. the
selected nodes and sensor types).

3.1 General optimization approach

Given the above-listed characteristics, black-box optimization strategies must be used. In particular, selection
strategies that are sequential, backward, and greedy have been demonstrated with success [25, 15, 14]. The
sensor selection algorithm used in this work shares those same characteristics and a short explanation on
each is presented below:

• Sequential selection as opposed to simultaneous means that the optimized sensor set is obtained by
adding or removing sensors one by one, instead of by attempting to simultaneously place all of them.
A sequential strategy is chosen because simultaneous strategies are only feasible for small problem
scales due to the combinatorial complexity of the sensor selection problem.

• Backward selection as opposed to forward means that the optimized sensor set is obtained by removing
sensors from a larger set, instead of adding them to a starting empty set. Backward selection is chosen
because evaluating P∞ requires a minimum set of sensors to ensure observability and to ensure that
the CARE admits a stabilizing solution. This excludes starting from an empty set. Moreover, forward
selection requires to quantify the amount of information provided by a single sensor sj+1 given an
existing sensor set Sj . In this work, this is done by comparing P∞ (Sj) to P∞ (Sj ∪ {sj+1}). Back-
ward selection only requires to evaluate this for each sensor in the current sensor set, to the contrary
of forward selection which requires to evaluate this for each candidate sensor outside the current set,
which is much more computationally demanding.

• Greedy selection means that each step removes the sensor that affects performance the least at that
step. Greedy algorithms do not guarantee optimality of the sensor selection but they are practical for
difficult optimization problems like this one and follow reasonable heuristics.

Because greedy approaches only chase local optimality and because backward selection does not allow to
expand the search beyond the current set, the choice of initial sensor set has a determining influence on the
performance of the optimized sensor set. Some attention is given to this in the following subsection.

3.2 Initial sensor set construction

In previous work [15, 14], the initial sensor set is chosen based on the SNR of individual sensors in training
scenarios. Even for sensor pre-selection, the drawbacks of SNR as a selection criterion have been presented
above, and it does not provide satisfactory results for the use-case considered in this article. High SNR
thresholds lead to initial sensor sets of manageable size but with poor P∞ due to the highly excited sensors
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being grouped together in a few specific clusters. Lower SNR thresholds lead to initial sensor sets with better
geometrical distribution and P∞, but with impractical size. Solutions have been proposed to further refine
this approach, for example with constraints on the minimum distance between the sensors in the initial sensor
set [15, 14].

This article proposes a novel approach to efficiently obtain an initial sensor set of manageable size with good
P∞. Along with its many qualities listed above, P∞ has the downside that it can only be evaluated for sensor
sets of a minimum size. As a result, the central idea in this work is to never treat sensors individually. Instead,
this article proposes the following approach, which is inspired by quasi Monte Carlo optimization [26].

1. Generate a large number of random sensor sets, each with sufficient size that P∞ can be evaluated.

2. Select from this pool of sensor sets the best performing one for each quantity to estimate, i.e. for each
corresponding diagonal entry of P∞ the sensor set with the lowest entry.

3. Combine those selected sensor sets to obtain a larger initial sensor set to be reduced in the subsequent
sequential greedy selection phase.

This approach is motivated by two reasons.

1. While working with sensor sets adds complexity compared to working with individual sensors, sensor
sets of minimum size (smaller than the final size of the optimized sensor set) are still manageable. They
allow for the fastest evaluation of P∞ and limit the number of potential sensor sets to explore, which
grows with the factorial of the size of the sensor sets. Still, exhaustive exploration is not possible, but
random sampling gives reasonable results thanks to the size reduction.

2. Using this random sampling, finding a sensor set which simultaneously provides acceptable perfor-
mance for all quantities to estimate is computationally challenging. However, separately finding sen-
sor sets with acceptable performance for each quantity to estimate is manageable. These sensor sets
can then be combined to obtain an initial sensor set that performs well for all quantities to estimate,
thanks to property (6) where inequality A < B is in the strict sense λA,i < λB,i ∀i = 1, ..., n.

P∞ (Sa ∪ Sb) < P∞ (Sa)

< P∞ (Sb)
(6)

The approach described above provides a sensor set of manageable size and with good P∞ that is suited for
the final sequential greedy reduction phase that follows.

3.3 Sequential Greedy reduction phase

In this final phase, sensors are sequentially removed from the large initial sensor set. Each iteration re-
moves the sensor of which the removal reduces the performance the least, and this is repeated until either a
performance threshold is reached or a cost objective is met.

To measure and compare performance, multiple functions Ψ have been used to summarize P∞ into a single
scalar quantifying the uncertainty ellipsoid around the estimated state [25]:

ΨA (P∞) =
√
trace(P∞) ΨD (P∞) = ln(det(P∞)) ΨE (P∞) = λmax(P∞))

ΨA is proportional to the mean squared length of the ellipsoid’s axes, and is also related to the expected
estimation Root Mean Square Error (RMSE), while ΨD represents the ellipsoid’s volume, and ΨE the length
of its largest axis. Because P∞ is already a black-box function of the decision variables, the choice of Ψ is
not driven by considerations of convexity or linearity. In this work, ΨA (P∞) =

√
trace(P∞) is chosen as

the objective function to minimize.

The overall sensor selection flow is summarized in Figure 1.
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Figure 1: Sensor selection flow

4 Use-case model

This work applies the sensor selection approach presented above to the use-case of load estimation of a wind
turbine pitch bearing. Before presenting the results, a short overview is given of the model underlying the
virtual sensing work. An analytical model of the ball bearing itself is combined with a finite element (FE)
model of the hub to obtain field variables (displacements, strains, accelerations, ...) on the hub as a response
to the forces and torques exerted by the blade on the inner ring of the pitch bearing [27].

The ball bearing is modeled using an analytical bearing model based on Hertzian contact theory to describe
the interactions between the rolling elements and the raceways. The bearing is a double-row, 4-points-of-
contact deep groove ball bearing with 2.5m pitch diameter. The analytical contact model allows to derive the
forces distributed over the raceways of the outer ring corresponding to the bearing reaction forces which must
balance the five components of the blade forces: three force components and two torque components (the
bearing is considered to have no rolling resistance and the torque about the bearing axis is thus considered
zero).

The hub is modeled using a reduced-order model based on FE Analysis, which uses those raceway forces
as input. The dimensionality reduction is useful for virtual sensing because it makes the size of the state to

Figure 2: FE model of pitch bearing and hub, with allowed sensor positions

estimate manageable, and because it makes the bearing observable for a feasible number of sensors.

Figure 2 shows the general geometry of the hub and its FE mesh, along with the allowed sensor positions.
Sensors can be placed at any nodes on the outer shell of the hub, but cannot be placed inside the bearings
or on the face to which the blade is bolted for practical reasons. Sensors can be accelerometers or strain
gauges. Each accelerometer measures three accelerations in the three axial directions, while each strain
gauge measures two in-plane strains, in the hoop direction and in the axial direction. Table 1 summarizes
the scale of the resulting sensor selection problem through some key parameters. Table 2 provides some
characteristic dimensions of the considered use-case.
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Table 1: Scale of the sensor selection problem

Number of

Elements 128942
Modes 10

Nodes 42994
Shell Nodes 31513
Allowed sensor nodes 8475

Table 2: General scale of the pitch bearing use-case

Nameplate capacity 3.4MW
Pitch diameter 2.5m
Blade length 50m
Blade weight 15 t

5 Results

Figure 3 presents the results of a sensor selection run, with the selection parameters listed in table 3.

Table 3: Sensor selection parameters

Population 105 sensor sets
# strain gauges per population set 5
# accelerometers per population set 5
Strain gauge noise std 10−7 mm def./mm mat.
Accelerometer noise std 1mms−2

Final # strain gauges 10
Final # accelerometers 10

The number of strain gauges and accelerometers in the final set is chosen based on Figure 4 which shows
how the estimation performance evolves as a function of the number of strain gauges and accelerometers.
As expected, Figure 4 shows that performance always decreases (i.e. ΨA increases) with the removal of
sensors. This loss of performance is not linear with the number of sensors and both an inflection point as
well a ceiling on estimation performance can be seen.

The sensor sets resulting from the proposed sensor selection approach can be intuitively understood given
that the hub is close to axisymmetrical. The sensors are placed close to the bearing raceways where the
contact forces are transfer the blade forces, and they are distributed along the hub circumference. Moreover,
the sensor positions are also consistent with regions of high deformation of the modeshapes selected in the
model order reduction.

Table 4 summarizes the performance of the proposed sensor set and compares it to the performance of a
sensor set based on simple geometrical heuristics as depicted in Figure 5. Table 4 shows that the optimized

Table 4: Estimation performance of the final set

Uncertainty std [kN]

Estimated quantity Proposed Heuristics-based

fx 0.43 0.33
fy 0.77 2.88
fz 1.24 2.15

ΨA ∼ overall RMSE 1.52 3.61

sensor set indeed outperforms the hand-picked sensor set. The predicted uncertainties are consistent with
error metrics obtained when actually running an estimator on the presented use-case.
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Figure 3: Proposed sensor set: top and side view
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Figure 4: Estimation performance in function of number of sensors

Figure 5: Heuristics-based sensor positions for comparison
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6 Conclusions

In this article, a sensor selection method is proposed and applied to the use-case of load estimation of a wind
turbine pitch bearing. This method allows to generate performant sensor sets without requiring the help
domain-specific constraints and heuristics. Still, the selected positions remain consistent with the highly-
excited regions of the hub and with common sensor selection intuitions. This also underlines the importance
of the modelling steps that precede the sensor selection step. In particular, model order reduction is crucial
for virtual sensing using FE-based models and the importance of the choice of reduction basis is clear.

The obtained sensor sets outperform hand-picked sensor sets that are often used in practice. Comparison
to recently proposed sensor selection approaches [14] on standard test-cases has not been done, as this
work focuses the wind turbine pitch bearing use-case. Standardized benchmarks on a library of estimation
problems with available models and data would be valuable to the research community.

The proposed approach relies on the AKF framework to derive P∞, the covariance matrix of the asymptotic
uncertainty on the estimation, which is used as performance metric for a given sensor set. This article has
presented the advantages of such an approach, but this approach also comes with the limitation that only
sensor sets can be evaluated, and not individual sensors. To accommodate this, the defining aspect of the
work presented here is the choice to always consider the performance of a given sensor set, or the contribution
of an individual sensor to the performance of a given sensor set, but never the performance of an individual
sensor in a vacuum, for which a rigorous metric is not available. The sensor selection procedure adopted in
this work reflects this choice and relies on quasi Monte Carlo methods to handle the scale and complexity of
the resulting sensor selection problem.

Still, this article has demonstrated how powerful a tool P∞ is. It allows to quickly derive a metric for the
performance of a given sensor set, based only on the model of the bearing and hub and on the positions and
noise levels of the individual sensors. The metric is valid in all operating conditions where the model remains
accurate, and does not require simulation results from one or more representative scenarios. This article has
shown how this metric can also be used to choose the number of sensors and evaluate the evolution of the
estimation performance in function of this number, which can be used for cost-benefit analyses.

Two further improvements are considered in the next steps. First, strain gauge orientation could be added as
a decision variable to the sensor selection problem. Optimizing the orientation along with the position of the
strain gauges is a natural extension of this work, but further increases the dimensionality of the optimization
problem. Separation of the larger resulting sensor selection problem into smaller decoupled problems could
be investigated to tackle this increased complexity.

Second, the presented approach could be extended to also take into account quality of the model at the sensor
positions into the sensor selection. In this work, the R matrix is not a function of the sensor positions and
only depends on the sensor noises. To account for areas of varying model accuracy or affected by non-
linearities, this matrix could be made position-dependent in order to weigh each position according to the
trustworthiness of the model predictions at that position.

Future work should also investigate how more refined optimization algorithms could be leveraged to accel-
erate or improve the sensor selection procedure. Topology optimization problems have a structure similar to
the sensor selection problem considered here, and they could provide inspiration for methods to approximate
P∞ as a function of continuous variables instead of binary selection variables.This would allow to apply
gradient-descent methods which have interesting optimality and convergence properties.

On the other side of the spectrum of optimization methods, genetic algorithms (GA) should also be con-
sidered to solve the sensor selection problem. The approach presented in this article already shares some
aspects with GAs, and this is no surprise as a GA problem can be almost directly formulated from the sensor
selection problem, with binary selection variables as genes and a fitness metric based on P∞. Crossovers
and mutations also make intuitive sense in the context of sensor selection. However, the scale of the problem
might be a challenge requiring further research to make it amenable to this interesting class of evolutionary
algorithms.
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