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Abstract
Locally resonant metamaterials are used to increase the sound insulation of a host structure, by introducing
bandgaps for wave propagation. While most solutions employ periodic layouts with translational resonators,
this paper investigates the potential associated with rotational and multimodal resonators. In order to study
the associated vibroacoustic phenomena, a comprehensive analytical model based on dynamic effective mass
density is first derived. Subsequently, both translational and rotational modes are combined in multimodal
resonator layouts. This results in an effective multimodal locally resonant metamaterial, for which accurate
and efficient predictions are achieved by combining the proposed analytical model with the modal effective
masses of the fixed-based resonator. Finally, it is demonstrated how multimodal metamaterials can suppress
the broad coincidence dip in the diffuse transmission loss of orthotropic host plates, and the geometry of two
realizable multimodal resonators is optimized to maximize the related broadband sound insulation.

1 Introduction

An emerging research field in recent years is related to vibroacoustic metamaterials, for which a growing
interest is captured by the possibility of achieving bandgaps for acoustic and elastic wave propagation, i.e.
frequency ranges in which no free wave propagation is possible. In particular, recent focus has been on
locally resonant metamaterials (LRMs) [1, 2], that allow to obtain resonance-based bandgaps by periodically
attaching local resonators to a host structure. The bandgaps are obtained close to the resonance frequencies
of the resonators, and they result from the Fano-like interference between incoming waves and out-of-phase
re-radiated waves by the local resonators [1]. The main advantage of LRMs is that they allow to target low
frequency bandgaps, despite keeping a low mass per unit area.

The presence of bandgaps in a mechanical structure allows for strong vibration attenuation, as well as sound
radiation and transmission reduction when acoustically relevant bending waves are targeted. In particular,
LRMs can be applied to achieve thin and lightweight acoustic partitions with improved sound transmission
loss (TL). For single panels, an interesting focus is on exploiting resonance-based bandgaps to suppress the
sharp TL dip around the critical frequency. This case has been extensively studied in [3], where also an
analysis on the optimal frequency of the resonators is performed.

Once the desired resonance frequency is chosen, next question is how to design the geometry of a realizable
physical LRM resonator that matches the defined requirements. Since a general design methodology is not
available, this is typically a trial and error process, based on engineering judgement [4]. In order to obtain
an efficient and automatic design process, numerical optimization can be employed [4, 5]. Optimization of
resonating structures is gaining significant interest in different domains, such as MEMS [6, 7] and vibroa-
coustics [5, 8]. Numerical optimization techniques usually require an iterative evaluation of the objective
function to be optimized, via a simulation of the system performance. Therefore, the computational cost of
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the employed prediction model is one of the crucial points in the design optimization of LRM systems.

The simplest prediction models consider infinite panels with attached single degree of freedom (SDOF) res-
onators [3, 9], and propose an analytical vibroacoustic description based on the concepts of effective medium
and dynamic effective mass density. However, the idealization towards SDOF resonators limits the accuracy
and the applicability of analytical models for realisable resonators. Other methods are based on a finite ele-
ment description of a single unit cell (UC) of the LRM, that is studied by imposing Bloch-Floquet periodicity
conditions [10]. This easily allows to compute the TL of LRMs when considering complex resonator geome-
tries [2, 11, 12]. However, despite the development of several model order reduction (MOR) strategies [13],
for complex LRMs the analysis can become computationally expensive, due to the high number of involved
degrees of freedom in the UC model. Alternatively, hybrid analytical-numerical approaches have been re-
cently developed. In [5], the bandgap width of a LRM plate is maximized by studying only the fixed-base
resonator by finite elements and maximizing the modal effective mass of the main mode of interest. In [4],
the finite element model of the UC is only used to compute the impedance of the LRM panel, that is then
employed to analytically compute the TL.

While most of the recent literature works focus on translational resonators, in this paper the potential of ro-
tational and multimodal resonators is investigated. While translational resonators transfer transversal forces
to the host structure, rotational resonators influence wave propagation by transferring bending moments that
depend on the specific propagation direction. In order to study the wave propagation and sound transmission
phenomena in LRMs with both translational and rotational resonators, we derive a comprehensive analytical
description based on the concept of dynamic effective mass density. This opens the way to combine trans-
lational and rotational modes in LRMs with complex multimodal resonator layouts, that can help improving
sound insulation in a broad frequency range. In this case, efficient predictions of the multimodal LRM can
be obtained by combining the analytical model with the extraction of translational and rotational modal ef-
fective masses from a simple modal analysis of the fixed-based resonator. As a showcase, we apply periodic
multimodal resonators to suppress the broad coincidence TL dip of orthotropic plates. The geometrical lay-
out of two multimodal resonator are numerically optimized through Genetic Algorithms (GAs), in order to
maximize broadband sound insulation for diffuse incident sound fields.

The present paper is organized as follows. Section 2 recalls the main vibroacoustic characteristics of or-
thotropic plates, with focus on the presence of a broadband coincidence dip. In Section 3, the analytical
model of orthotropic LRM plates based on dynamic effective mass density is presented, when considering at-
tached SDOF translational and SDOF rotational resonators. Section 4 discusses how multimodal orthotropic
LRM plates with complex resonators can be described by combining analytical predictions with modal ef-
fective masses extracted for the fixed-base resonator. Two selected multimodal resonator layouts are then
optimized for maximum broadband sound insulation. Finally, Section 5 gives conclusions and remarks.

2 Vibroacoustics of orthotropic plates

In this Section, we summarize the main vibroacoustic properties of orthotropic plates, namely the directional
dependence of bending stiffness and the presence of a broadband coincidence dip for diffuse field sound
transmission.

For thin, homogeneous orthotropic plates with thickness h, four independent elastic constants are required
to characterize the plate bending: the Young’s moduli Ex, Ey, the shear stiffness Gxy and the Poisson’s ratio
νxy. For harmonic external loads as defined in Figure 1, i.e. a pressure p(x, y, t) = P ej(kxx+kyy+ωt) and
bending moments per unit of area qx(x, y, t) = Qxe

j(kxx+kyy+ωt) and qy(x, y, t) = Qye
j(kxx+kyy+ωt), the

equation of motion in terms of the harmonic transverse (bending) displacement w(x, y, t) = W ej(kxx+kyy+ωt)

can be written by considering the equilibrium of an infinitesimal portion of the plate:

− ρhω2W +
(
Dxk

4
x + 2Hk2xk

2
y +Dyk

4
y

)
W = −ρhω2W +D(ϕ)k4W = P − jkxQx − jkyQy (1)

where ρ is the mass density of the plate, Dx = Exh3

12(1−νxyνyx)
and Dy =

Eyh3

12(1−νxyνyx)
are the flexural stiffnesses

of the plate along the x and y directions, and H = Dxνyx+2Dxy with Dxy =
Gxyh3

12 , νxyEy = νyxEx. W , P ,
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Figure 1: Scheme of the considered orthotropic plate and distributed loads, along with the elevation angle θ
and azimuthal angle ϕ for an incident plane wave.

Qx, Qy are the complex-valued amplitudes of plate deflection and the loads, and kx = k cosϕ, ky = k sinϕ
are the projections of the wavenumber k along the x, y directions when referring to a propagation direction
defined by the azimuthal angle ϕ (cf. Figure 1). In Eq. (1), D(ϕ) = Dx cos

4 ϕ+2H cos2 ϕ sin2 ϕ+Dy sin
4 ϕ

can be interpreted as the bending stiffness of the orthotropic plate in the direction ϕ. When damping is taken
into account, complex bending and shear stiffnesses can be introduced through the loss factor η0, i.e. Dx,
Dy, H can be substituted by Dx(1 + jη0), Dy(1 + jη0) and H(1 + jη0).

The dispersion relation along direction ϕ, i.e. the relation between frequency ω and wavenumber k(ω, ϕ) for
free wave propagation, results directly from Eq. (1) when considering a homogeneous equation of motion:

ρhω2 = D(ϕ)k(ω, ϕ)4 (2)

For a plane incident sound wave whose propagation direction is defined by elevation angle θ and azimuthal
angle ϕ (cf. Figure 1), a bending wave in the plate is induced with trace wavenumber k = ktr = ω

c sin θ,
whose projections along the x and y directions are kx = ω

c sin θ cosϕ and ky = ω
c sin θ sinϕ. The related

transmission loss R can be analytically computed as [14]:

R = −10 log10 τ(ϕ, θ), τ(ϕ, θ) =

∣∣∣∣
zf

zf + zp

∣∣∣∣
2

(3)

where τ(ϕ, θ) is the transmission coefficient. The fluid wave impedance zf and the plate wave impedance zp
are given by:

zf = 2ρ0c(1− sin2 θ)−1/2 zp = −(j/ω)(D(ϕ)k4 − ρhω2) (4)

where ρ0 is the density of the surrounding fluid and c is the speed of sound in the fluid.

For a diffuse incident field, the transmission coefficient can be found by integrating the plane wave transmis-
sion coefficient τ(ϕ, θ) over all possible incident angles:

τd =

∫ 2π
0

∫ θl
0 τ(ϕ, θ) sin θ cos θdθdϕ
∫ 2π
0

∫ θl
0 sin θ cos θdθdϕ

(5)

where θl denotes the upper limit of the elevation angle to account for the non-ideal diffuseness: θl = 85◦ is
used in the remainder of the paper.

Coincidence is defined as the resonance phenomenon that occurs when the bending wave speed in the plate
is equal to the phase speed of the incident sound wave. For an incident sound wave with elevation angle θ,
the speed in the direction parallel to the panel will be c/ sin θ. A significant dip in the sound transmission
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(a) (b)

(c) (d)

Figure 2: (a,b) Dispersion curves and (c,d) sound transmission loss of the considered orthotropic plate for
(a,c) ϕ = 0◦ and (b,d) ϕ = 90◦.

loss appears at the coincidence frequency, that is defined as [15]:

fco(ϕ, θ) =
c2

2π sin2 θ

√
ρh

D(ϕ)
. (6)

Due to the directional dipendence of the bending stiffness D(ϕ), for orthotropic plates the coincidence
frequency for an elevation angle θ depends on the direction of in-plane propagation ϕ.

In what follows, an orthotropic plate with the following material properties will be considered: h = 15
mm, ρ = 1200 kg/m3, Dx = 1500 Nm, Dy = 4500 Nm, η0 = 0.05. Sound transmission in air will be
studied, by setting c = 341 m/s and ρ0 = 1.21 kg/m3. Figure 2 shows the related dispersion curves for wave
propagation at azimuthal angles ϕ = 0◦ and ϕ = 90◦, along with the TL curves for varying elevation angle
θ. The coincidence frequencies of the plate for different elevation angles θ can be assessed by identifying
the intersection of dispersion curves with the incident trace wavenumber curves [14, 16]. Due to the varying
coincidence frequency with azimuthal angle ϕ, a broadening of the coincidence dip in presence of orthotropy
appears in the diffuse field TL curve. This is shown in Figure 3, where a comparison with diffuse field TL
curves for isotropic plates is provided, when considering isotropic bending stiffnesses equal to Dx and Dy.
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Figure 3: Diffuse field sound Transmission Loss of the considered orthotropic plate.

3 Analytical modelling of orthotropic LRM plates with SDOF transla-
tional and SDOF rotational resonators

In this Section, the concept of dynamic effective mass density [3, 9] will be introduced to analytically study
the vibroacoustic behaviour of orthotropic LRM plates with attached SDOF translational and SDOF rota-
tional resonators.

3.1 Orthotropic LRM plates with attached SDOF translational resonators

Let’s consider the orthotropic LRM plate whose UC is represented in Figure 4a: the attached resonators
have a single vertical translational DOF along uz, mass mz, stiffness kz, and fixed-base resonant frequency
ωz =

√
kz/mz. The size of a single UC is Lx ×Ly, and n = 1/(LxLy) is the number of resonators per unit

area. Resonator damping can be considered through a loss factor ηz, i.e. by substituting kz with kz(1 + jηz).

For a flexural wave with wavelength λ = 2π/k, the resonator displacements and the normal forces transmit-
ted to the host plate are well approximated as continuous, provided that the resonators are attached at a sub-
wavelength scale, i.e. the distances among the adjacent elements on the plate surface are significantly smaller
than the wavelength [9]. For harmonic motion w(x, y, t) = W ej(kxx+kyy+ωt), uz = Uze

j(kxx+kyy+ωt), the

(a) (b)

Figure 4: Scheme of the LRM plate UC when attaching (a) translational and (b) rotational resonators.
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equation of motion of the resonator and the continuous transmitted pressure can be written as [3, 9]:
{
−mzω

2Uz + kz (Uz −W ) = 0

P = nkz (Uz −W ) = nmzω
2Uz

(7)

From Eq. (7), the complex amplitudes P of the the pressure transmitted to the plate can be expressed as
function of the complex amplitude W of the plate deflection. By substituting such expression into Eq. (1),
along with Qx = Qy = 0, one gets:

−
(
ρh+

nkzmz

kz −mzω2

)
ω2W +D(ϕ)k4W = 0 (8)

The dynamic effective mass density of the LRM can be therefore defined as:

ρeff,z = ρ+
nkzmz

h (kz −mzω2)
ρeff,z,und = ρ+

nmz

h(1− (ω/ωz)2)
(9)

where ρeff,z,und is the undamped effective mass density, i.e. for undamped resonators and purely real kz.

From Eq. (9) it results that a negative undamped effective mass is obtained for ωz ≤ ω ≤ ωz
√
1 +mratio,

where mratio = mz/mUC is the ratio between the resonator mass mz and the mass of the host structure
mUC = ρhLxLy within the UC.

The undamped effective mass density found in Eq. (9) can be used in place of the static mass density of the
plate ρ in Eq. (2) to study the dispersion relation of the system:

k4 =
ρeff,z,und(ω)hω

2

D(ϕ)
(10)

From Eq. (10) it can be seen how only imaginary wavenumbers, corresponding to evanescent instead of
propagating waves, are found for negative mass densities ρeff,z,und(ω) ≤ 0. This means that a bandgap with
no propagating waves is created for ωz ≤ ω ≤ ωz

√
1 +mratio. The effective mass density from Eq. (9) can

be also used in place of the static mass density of the plate ρ in Eq. (4) to analytically compute the TL of
the system. In particular, a TL peak is expected close to the resonance frequency ωz of the resonator, as the
magnitude of the effective mass density has a peak close to this frequency.

3.2 Orthotropic LRM plates with attached SDOF rotational resonators

The UC of orthotropic LRM plate with attached SDOF rotational resonators, represented in Figure 4b, is
now considered: in this case the resonators rotate around the y axis with DOF θry, and are associated with
rotational inertia Jry, rotational stiffness kry, and fixed-base undamped resonant frequency ωry =

√
kry/Jry.

Damping can be considered by a loss factor ηry, i.e. by substituting kry with kry(1 + jηry).

When considering a continuous distribution of rotational resonators, and for harmonic motion w(x, y, t) =
W ej(kxx+kyy+ωt), θry = Θrye

j(kxx+kyy+ωt), the equation of motion of the resonators and the continuous
transmitted bending moment can be written as:

{
−Jryω

2Θry + kry (Θry(x, y, t)− jkxW ) = 0

Qx = nkry (Θry − jkxW ) = nJryω
2Θry

(11)

From Eq. (11), the complex amplitude of the transmitted bending moment Qx can be expressed as function
of the complex amplitude W of the plate deflection. By substituting the related expression into Eq. (1), and
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considering P = Qy = 0, the dynamic effective mass density is found as:

ρeff,ry = ρ+
nk2xkryJry

h (kry − Jryω2)
, ρeff,ry,und = ρ+

nk2xJry
h(1− (ω/ωry)2)

(12)

Similarly, the effective mass density for rotational resonators around x can be derived as:

ρeff,rx = ρ+
nk2ykrxJrx

h (krx − Jrxω2)
ρeff,rx,und = ρ+

nk2yJrx

h(1− (ω/ωrx)2)
(13)

The expressions of ρeff,ry and ρeff,rx in Eqs. (12) and (13) are similar to the one of ρeff,z, but with additional
scaling factors k2x and k2y, that for an incident sound wave defined by (ϕ, θ) become k2x = ω2

c2
sin2 θ cos2 ϕ

and k2y = ω2

c2
sin2 θ sin2 ϕ. Some insight into the influence of rotational resonators on the sound transmission

of the LRM plate can therefore be discussed:

• The influence of rotational resonators is directional. In particular, the influence of rotational resonators
around y is maximum for wave propagation along the x-axis and null along the the y-axis, as expressed
by the factor cos2 ϕ. Viceversa, the influence of rotational resonators around x is maximum for prop-
agation along y and null for propagation along x, as expressed by the factor sin2 ϕ. Also, in general
the influence is maximum for (almost) grazing incidence and null for normal incidence, as expressed
by the factor sin2 θ.

• The influence of rotational resonators increases with frequency, as expressed by the factor ω2.

The effective mass densities in Eqs. (12) and (13) can be used to find the dispersion curves of orthotropic
LRM plates with rotational resonators. When considering rotational resonators around the y axis, and in-
plane wave propagation defined by an angle ϕ, the dispersion curve can be found by imposing ω and solving
for k. This leads always to the real root:

k =

√√√√√
n cos2 ϕJryω2

1−(ω/ωry)2
+

√
n2 cos4 ϕJ2

ryω
4

(1−(ω/ωry)2)
2 + 4D(ϕ)ρhω2

2D(ϕ)
(14)

Since wavenumbers are real for all possible frequencies, no bandgap is created. However, a singularity
appears at ω = ωry, where the dispersion curve exhibits a discontinuity.

The TL of orthotropic LRM plates with attached rotational resonators can be predicted by using the analytical
formulas in Eqs. (3) and (4), provided that the dynamic effective mass densities in Eqs. (12) and (13) are
used in place of the static mass density ρ. When the wavenumbers kx and ky are imposed by the incident
wave, the magnitude of the effective mass densities has a peak for frequency approaching the resonance
frequencies of the resonators ωry and ωrx, around which a TL peak is expected.

3.3 Numerical examples and interpretation

The presented analytical models for orthotropic LRM plates with attached SDOF translational and SDOF
rotational resonators are now validated through comparison with the Wave and Finite Element Method
(WFEM). Also, a physical interpretation of the results is provided.

The same orthotropic host plate as in Section 2 is considered. In a first case, attached SDOF translational
resonators are studied, with the following properties: ωz = 2πfz, fz = (fco(90

◦, 85◦) + fc(0
◦, 85◦)) /2 =

1589.5 Hz, mratio = 0.2, Lx = Ly = 0.05 m. In a second case, periodically attached rotational resonators
around the y-axis are considered, with the following properties: ωry = 2πfry, fry = 1589.5 Hz, Jry =
JpuaLxLy, Jpua = 1.65 · 10−2 kg, kry = Jryω

2
ry(1 + iηry), where Jpua is the considered moment of inertia

per unit area in the resonator distribution. For both translational and rotational resonators, the resonance
frequencies fz and fry are therefore tuned in the middle of the coincidence dip of the orthotropic plate.
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(a) (b)

(c) (d)

Figure 5: (a,b) Dispersion curves and (c,d) sound transmission loss of the considered orthotropic LRM plate
with periodically attached SDOF translational resonators, for (a,c) ϕ = 0◦ and (b,d) ϕ = 90◦.

The analytical models are validate through a comparison with WFEM computations, where one single UC
of the periodic LRM plate is modelled, by discretizing the orthotropic plate through linear Kirchhoff plate
finite elements, and modelling the resonator as an additional (translational or rotational) DOF attached to the
central node of the UC. Bloch-Floquet periodicity conditions are applied, and dispersion curves are obtained
by imposing real propagation constants along the directions x and y, and solving the resulting linear eigen-
value problem to obtain the squared frequencies ω2 [10]. The sound TL can be instead computed following
the methodology proposed in [17]: the finite element model of the UC is combined with an analytical de-
scription of wave propagation in the surrounding fluids, and the interaction with the structure is modelled
through a series of equivalent nodal forces. In this way, the response to a convected harmonic pressure can
be calculated, along with the sound transmission loss.

Figures 5a and 5b plot the dispersion curves of the LRM plate with attached SDOF translational resonators
for ϕ = 0◦ and ϕ = 90◦. Results show how a bandgap is created in the frequency region of negative effective
mass density fz = 1589.5 Hz ≤ f ≤ fz

√
1 +mratio = 1741 Hz, and how a good match between analytical

and WFEM computations is obtained. The dispersion curves for ϕ = 0◦ of the LRM plate with attached
SDOF rotational resonators is instead plotted in Figure 6a. Considering that the related undamped dynamic
effective mass density can be written as ρeff,ry,und = ρ +

k2xJpua
h(1−(ω/ωry)2)

, the analytical dispersion curves
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(a) (b)

Figure 6: Dispersion relation (a) and sound Transmission Loss (b) for ϕ = 0◦ of the considered orthotropic
LRM plate with periodically attached SDOF rotational resonators.

depend only on the inertia per unit of area of the resonators Jpua, and not on the specific UC dimensions.
However, we see how the WFEM predictions and the agreement between the two models depend on the UC
dimensions considered in the WFEM: the analytical model captures the behaviour of the system for relatively
small UC (e.g. Lx = 0.005 m), while for larger UCs (e.g. Lx = 0.05 m) it exhibits still some differences with
respect to the WFEM results, especially in terms of the frequency at which the discontinuity in the dispersion
curve appears. Such discontinuity can be interpreted as an introduced zero-width bandgap: it has the same
shape as for the bandgaps observed for LRMs with translational resonators (Figures 5a and 5b), but covers
only a single frequency.

Figures 5c and 5d plot the TL curves for the LRM plate with SDOF translational resonators for ϕ = 0◦, 90◦,
while the TL predictions for the LRM plate with SDOF rotational resonators for ϕ = 0◦ and Lx = 0.005 m
are shown in Figure 6b. Damping factors η0 = ηz = ηry = 0.05 are considered, and curves for different
elevation angles θ are plotted. In general, we can see how a TL peak is introduced at the resonant frequency
of the resonator. For coincidence frequencies fco(ϕ, θ) of the host structure above the created bandgap, e.g.
for θ = 30◦, an additional low-frequency coincidence is introduced close to the upper bound of the bandgap
[16]. The corresponding TL curve therefore exhibits a characteristic peak-dip shape close to the resonance-
based bandgap, along with a second coincidence dip close to the one of the original bare plate. Instead, if
the coincidence frequency fco(ϕ, θ) is sufficiently close to the (zero-width) bandgap, e.g. for almost grazing
incidence θ = 85◦, no coincidence is achieved, neither close to the bandgap, nor close to the bare plate
coincidence. In this case, the TL curve presents only a peak at the resonance frequency of the resonator,
without any coincidence dip.

The coincidence suppression observed for almost grazing incidence is present also for diffuse field inci-
dence [3, 4]: this is shown in Figures 7a and 7b, where a comparison is provided between the orthotropic
LRM plates, the bare plate, and a bare plate with the same mass as the LRM plates. Results show how
LRM treatments allow to achieve significant broadband TL improvements in orthotropic plates, and how the
coincidence dip can be suppressed by a proper tuning of the bandgap frequency range.

4 Modelling and optimization of multimodal resonator layouts for or-
thotropic LRM plates

In this Section, the analytical model based on dynamic effective mass density will be used to analyze the
behaviour of orthotropic LRM plates with complex multimodal resonator layouts. This follows the extrac-
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(a) (b)

Figure 7: Diffuse field sound Transmission Loss of the considered orthotropic LRM plate, in the case of
periodically attached (a) SDOF translational and (b) SDOF rotational resonators.

tion of translational and rotational modal effective masses from a simple modal analysis of the fixed-base
resonator. The resulting computationally cheap analysis will be used for the efficient design optimization of
the resonator layouts in order to maximize broadband sound insulation.

4.1 Considered multimodal resonator layouts and design variables

The present discussion will focus on the two multimodal resonator layouts shown in Figure 8, and attached
to the previously introduced orthotropic plate. Resonators made by polymethyl methacrylate (PMMA) will
be considered through the following material properties: E = 4850 MPa, ν = 0.31, ρ = 1200 kg/m3, η = 0.05.

Layout 1 consists of a bi-directional rotational resonator, where a mass is suspended by a vertical beam.
In this case the two main modes of interest are related to rotations of the mass around the x and y axis,
with corresponding bending of the vertical beam, and transfer of bending moments to the host structure
influencing wave propagation along the y and x directions, respectively. Layout 2 is inspired by [2], and
consists instead of a translational resonator with two resonating units, that are independently connected to
the host structure and constituted by two separate cantilever beams with attached end-point masses. In this
case the two main modes of interest will be related to the vertical motion of the masses, with transfer of
vertical forces and bending moments to the host structure.

The layouts will be optimized to to maximize broadband sound insulation. This will be done by considering
the design variables shown in Figure 8. In both cases, planar layouts extruded along y with thickness b
are considered. For Layout 1, the design variables are related to the dimensions of the resonator base, of
the vertical beam and of the end mass. For Layout 2, both resonant units share the same design variables
related to the resonator base and the dimension b in the y direction, while the design variables related to the
cantilever beams and the end masses are kept independent, in order to obtain different associated resonant
frequencies.

4.2 Analysis methodology

The analytical model presented in Section 3, based on dynamic effective mass density, can be used to effi-
ciently analyze the behaviour of LRM plates with complex multimodal resonator layouts. In this case, each
mode can be associated with translational and rotational inertial contributions mz, Jrx, Jry, which can be
extracted as modal effective masses from a simple modal analysis of the fixed-base resonator.
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(a) (b)

Figure 8: Considered multimodal resonator layouts: (a) Layout 1, (b) Layout 2. The design variables used
in the optimization process are also indicated.

After discretizing the resonator layout by linear hexaedral finite elements, the k-th eigenfrequency ωr,k and
the k-th mode shape ϕr,k can be found by solving the following eigenvalue problem:

(−ω2
rMr +Kr)ϕr = 0 (15)

where Mr and Kr are the assembled mass and stiffness matrices of the resonator for fixed-based boundary
conditions. The eigenvalue problem in Eq. (15) is solved for a number nm of modes such that all the modes
below 3 times the maximum frequency of the analysis are included. Assuming mass normalized modes, the
modal effective mass of mode k along the kinematic direction i = z, θx, θy can be computed as [18]:

meff
i,k = Γ2

i,k, Γi,k = ϕT
r,kMrti (16)

where Γi,k is the modal participation factor corresponding to a unitary rigid body motion ti imposed to the
resonator along the i-th direction. Rigid rotations along θx and θy are imposed around a center of rotation
positioned in correspondence of the center of the resonator base (or the resonating unit base), on the mid-
plane of the host plate, i.e. at a distance h/2 from the resonator base.

The computed translational and rotational modal effective masses for each resonator mode can be summed
to obtain the effective mass density of the multimodal LRM plate, that can be expressed as:

ρeff =ρ

(
1 +mratio −

nm∑

k=1

meff
z,k

mUC

)
+

nm∑

k=1

1

h

(
nkeffz,km

eff
z,k

keffz,k −meff
z,kω

2
+

nk2yk
eff
θx,k

meff
θx,k

keffθx,k −meff
θx,k

ω2
+

nk2xk
eff
θy,k

meff
θy,k

keffθy,k −meff
θy,k

ω2

)

(17)

where the factor
(
1 +mratio −

∑nm
k=1

meff
z,k

mUC

)
is added to consider the quasi-static contribution of modes with

higher order than the nm considered ones, and the modal effective stiffnesses are found as keffi,k = meff
i,kω

2
r,k.

The computed effective mass density can be finally used in Eq. (3) and (4) to efficiently predict the TL of
the orthotropic LRM plate when attaching the considered multimodal resonator layouts.

4.3 Optimized multimodal resonator layouts

The optimal resonator layouts are found by solving an optimization problem. As objective function, we
maximize the single number rating RA related to the standard ISO 717 [19]. RA represents the A-weighted
broadband sound insulation for pink noise excitation in the frequency range 100-3150 Hz, and can be found
as RA = Rw + C, with Rw and C defined by the standard. A constraint is also imposed on the maximum
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(a) (b)

Figure 9: Optimized resonator layouts: (a) Layout 1, (b) Layout 2.

(a) (b)

Figure 10: Modes of interest for the optimized resonators: (a) Layout 1, (b) Layout 2.

resonator mass, that has to be lower then 20% of the bare plate mass. The considered optimization problem
is therefore:

max RA

subject to mratio ≤ 0.2
(18)

The optimization problem in Eq. (18) is solved using a Genetic Algorithm (GA) through the ga function
from Matlab.

The optimized resonator layouts are shown in Figure 9, while the corresponding fixed-base modes of interest
are shown in Figure 10, and the TL curves are represented in Figure 11. Also, Figure 11 compares the TL
curves related to the LRM, to the original bare plate, and to bare plates with static masses equivalent to the
LRMs, i.e. increased by 20%. We see how each mode of interest introduces a TL peak within the coincidence
dip of the original bare plate. For Layout 1, the modes of interest are the two rotational ones around x and
y. Mode 1 corresponds to a rotation around the x axis and is placed closer to the critical frequency observed
along the stiffer direction y, while mode 2, corresponding to a rotation around y, is placed closer to the
critical frequency observed along x. For Layout 2 the main peaks are related to the two translational modes
(modes 3 and 4), but also smaller peaks related to rotational modes (modes 1 and 2) are exploited by the
optimizer. These modes correspond to translations of the suspended masses along y, and transfer bending
moments around x through the small distance of the masses from the host structure along z. Modes 1 and
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(a) (b)

Figure 11: Transmission Loss curves of the orthotropic LRM plate with attached optimized resonators: (a)
Layout 1, (b) Layout 2.

Table 1: Comparison between the analytical model and the WFEM in terms of computational cost. Diffuse
field TL computations of the orthotropic LRM plate are considered, when attaching Layout 1 of the resonator.

Method Num. freq. Dim. grid (ϕ, θ) Comp. time
Analytical 257 61×31 0.21 s

WFEM 257 61×31 15 h 45 min (single core)
3 h 48 min (parallelized on 6 cores)

2 therefore mainly influence wave propagation along y. For both Layout 1 and Layout 2, we can see how
the original coincidence dip is suppressed by the introduced resonant TL peaks. This leads to an eventual
improvement of RA by ≈4 dB with respect to bare plates with equivalent mass.

In order to validate the employed analysis methodology and the optimized layouts, a comparison is performed
between analytical and WFEM TL predictions. In the UC model used in the WFEM, the host plate is
discretized by linear Kirchhoff plate finite elements, while the attached resonator is discretized by linear
hexaedral finite elements. In the resonator discretization, the same mesh is considered both for the WFEM
and for the fixed-base modal analysis in the analytical model. The comparison between the two methods also
focuses on computational costs, reported in Table 1 for TL curves computed for the same 257 frequencies,
using the same grid to numerically integrate τ(ϕ, θ) in Eq. (5), and considering an Intel(R) Core(TM) i7-
9850H CPU (2.60GHz). The reported computational costs are related to Layout 1, when both methods are
fully implemented in Matlab, including the finite element formulation and computations. Results show how
the computational cost associated with the analytical model is extremely low with respect to the WFEM,
while no significant degradation of the results is observed: the TL curves overlap very well, and very close
RA values are obtained.

5 Conclusions

In this paper, the potential of employing rotational and multimodal resonators in orthotropic locally resonant
metamaterials (LRM) plate has been investigated.

An analytical vibroacoustic description of orthotropic LRM plates with periodically attached SDOF trans-
lational and SDOF rotational resonators has been derived, focusing on the related dynamic effective mass
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density. The developed analytical model has been extended to consider complex multimodal resonator lay-
outs, with both translational and rotational modes of interest. This is done by defining the effective mass
density as function of the modal effective masses extracted from a simple modal analysis of the fixed-base
resonator. The accuracy of the proposed analytical models has been verified through comparisons with Wave
and Finite Element Method (WFEM) predictions, with respect to which an extreme reduction of the compu-
tational costs has been obtained.

The proposed efficient prediction model has been used in combination with numerical optimization to auto-
matically design the geometrical layout of two multimodal resonators, exploiting respectively mainly rota-
tional and translational modes. The layouts have been optimized to maximize broadband sound insulation
through the single number rating RA, achieving significant broadband TL improvements and suppressing the
broad coincidence dip of the original bare orthotropic plate.

The demonstrated potential of employing multimodal resonators in LRMs can be further extended by widen-
ing the design space of the considered structural optimization methods. For example, shape optimization and
topology optimization can explore different structural shapes and go beyond usual design concepts, fostering
innovation towards new multimodal resonator layouts.
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