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Abstract
The use of physical insight to assist data-based learning has the potential to help tackle two of the major
problems faced by a purely data-driven model: a lack of insight into a model’s operation, leading to mistrust,
and the requirement for training data collection across all operational conditions. Physical knowledge can
provide interpretability in to a modelled process, increasing confidence in predictions, whilst improved ex-
trapolation capabilities of physically-informed models relax the need for expensive data collection. In many
engineering applications, a well understood aspect of a process may be represented with a physical model
with the remainder of the process (e.g. turbulence, nonlinearities, effects of mechanical joints etc.) better
captured via a data-based component. This paper aims to show how partial knowledge may be incorporated
within data-based Gaussian processes via manipulation of the covariance function (kernel) to improve perfor-
mance and interpretability. The importance of model structure reflecting the underlying process is discussed
and highlighted within the context of the free vibration of a cantilever beam.

1 Introduction

The modelling of modern engineering structures and accurate representation of phenomena within varying
or extreme environments is challenging. The use of composite materials, effects of mechanical joints and
changes in manufacturing tolerances, for example, can induce significant variability in dynamic behaviour,
making the development and validation of physics-based models difficult. The challenge of modelling such
phenomena, which may be hard to represent through traditional physics-based approaches, combined with
an increasing availability of monitoring data, has lead to a surge in the adoption of data-based methods for
many modelling tasks. These allow for direct learning of patterns and relationships within data without the
need for complete knowledge of the underlying process, leading to highly flexible model structures.

Although a powerful tool when implemented correctly, data-based methods are not without limitations; per-
formance of models far from observed conditions typically suffers, increasing the demand for expensive data
collection. In many cases it may not be possible to obtain data for a given event e.g. structural response
in extreme weather, forcing models to rely on extrapolation. The overfitting of models, particularly highly
flexible ones, is also a problem [1]; this can lead to adequate or high perceived model performance within
the training stage of model construction and a significant drop in performance when new data is presented.

The emerging field of physics-informed machine learning attempts to incorporate prior physical knowledge
within the design of machine learning models, with the aim of benefitting from the advantages of both types
of model structure. Insight, interpretability and improved extrapolation capabilities may be provided via a
physics-based component, with flexibility and an ability to model unknown processes the task of data-based
learning. An interesting focus point of this research field is how various forms of prior knowledge (algebraic
equations, simulations, human feedback etc.) may be included within a model and how this affects the
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combined model structure. Von Rueden et al. [2] provide an overview of integrating prior knowledge within
machine learning models whilst Cross et al. [3] focus more specifically on the field of SHM.

The work of this paper will focus on the integration of prior knowledge within Gaussian Process (GP) regres-
sion models. A GP is a non-parametric, flexible, Bayesian machine learning technique [4] and has shown to
be effective within a variety of structural dynamics applications, ranging from the prediction of aircraft land-
ing gear loads to wind turbine power curves [5, 6, 7]. The structure of a GP is defined through the selection
of a mean function m(x) and a covariance function (or kernel) k(x, x′), the modification of which provides
two clear avenues for the inclusion of physical knowledge.

One may consider the construction of physics-informed machine learning models to lie on a scale between
the extremes of a purely physics-based and purely data-based models, similar to that shown in Figure 1. In
the case of complete physical understanding, a purely physics-based model would be most appropriate whilst
zero knowledge of a process would suggest the implementation of a purely data driven learner.

Figure 1: Sliding scale of prior knowledge inclusion within physics-informed machine learning. Examples
of prior knowledge are placed in their approximate place on the scale for visualisation purposes, however
there will be significant overlap between categories.

External effects such as environmental conditions and weather can change the dynamic behaviour of a struc-
ture and failure to account for this can lead to increasing model error and misclassification of damage states
[8, 9]. Knowledge of how a structures behaviour changes with its environment can be useful to improve
prediction quality within varying environments. Zhang et al. [10] incorporated the relationship between
temperature and longitudinal deflection of a bridge deck within the mean function of a GP to improve pre-
diction quality across varying seasons.

In many engineering applications, there is some aspect of a process that is not well understood and is not
accounted for within a physics-based model. Previous work of the authors investigated the use of Morisons
equation in the prediction of wave loads on offshore structures [11, 12]. Morisons equation relies on a num-
ber of simplifying assumptions and does not account for phenomena such as vortex shedding and turbulence
[13, 14]. In [12], Morisons equation was used within the mean function, with the learning of the excluded
processes the role of the data-based GP-NARX. This improved predictive performance, particularly in in-
stances of reduced training data coverage.

The inclusion of boundary constraints within a model represents a scenario where some aspect of a systems
behaviour is known for a given condition, often in the form of a physical law. Aspects of prior knowledge in
the form of boundary constraints are strictly enforced within a model structure and a high degree of certainty
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that the constraints hold is therefore required. However, boundary constraints are often very basic knowledge
and don’t cover or summarise the main behaviour to be modelled. The work of Jidling [15] predicted strain
fields with a Multiple Output Gaussian Process (MOGP) and enforced equilibrium constraints for linearly
elastic materials through manipulation of the cross-covariance terms within the kernel. Jones [16] used
Neumann boundary conditions to improve the localisation of acoustic emissions in instances of low data
coverage.

The aim of this paper is to discuss how the level and type of prior knowledge available changes how to best
manipulate model structure. The consideration of the scale within Figure 1 and where a particular model
structure may lie will be a useful tool throughout the discussion of ideas. This concept is investigated in the
context of free vibration of a cantilever beam where it is assumed only limited prior knowledge is available.
The methods used within the paper will focus on how to incorporate partial physical knowledge within a GP
through the use of kernel design.

The covariance function (kernel) of a GP defines a family of functions from which predictive samples may be
drawn. Through the manipulation and selection of kernels, one may enforce desirable or physically derived
behaviours within the predictions of a GP. A useful property of kernels for varying the inclusion of prior
knowledge within a GP is the ability to be combined, through addition, multiplication and composition, with
other kernels. The use of physically derived kernels, KPhy, in combination with flexible, more generally
applicable, kernels, such as a Squared Exponential, KSE , allows for the creation of model structures where
KPhy aims to encode some aspect of prior knowledge and KSE captures unknowns. For example, an additive
kernel structure may aim to capture phenomena not represented within a physics based model:

K(x, x′) = KPhy(x, x
′)︸ ︷︷ ︸

Understood process

+ KSE(x, x
′)︸ ︷︷ ︸

Excluded phenomena

+ σ2
nδij︸ ︷︷ ︸

Noise

(1)

2 Case study: Free vibration of a cantilever beam

To demonstrate the proposed method of handling partial knowledge within the GPR framework, we employ
here a simulated case study of a cantilever beam. This case study is useful for a number of reasons; a
beam assumption is applicable to a wide range of engineering applications from the modelling of offshore
structures to aeroplane wings, and importantly, it provides us with an opportunity to explore the embedding
of various levels of physical insight. Where a structure of interest is well modelled by a cantilever beam,
we have full analytical solutions available. If a structure is cantilever but not of uniform cross section or
homogeneous material, knowledge of the mode shapes may no longer be assumed (this is the example we
pursue here). Finally, we may face a situation where we are only confident about boundary conditions, in
which case we may wish to employ constraints within the GPR, for example [16, 17].

The dataset used within the study was from a simulated cantilever beam as shown in Figure 2, where x is
distance along the beam from the fixed end.

Figure 2: Cantilever beam of length L.
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The free vibration response of a beam can be found through through separation of variables with a solution
of the form Y (x, t) = W (x)T (t). The response of a beam in free vibration may be calculated through the
superposition of normal modes [18].

Y (x, t) =
∞∑

i=1

Wi(x)Ti(t) =
∞∑

i=1

Wi(x)e
−ζωi

nt(Ai cos(ω
i
nt) +Bi sin(ω

i
nt)) (2)

where Ai and Bi are determined from the initial conditions of the beam. For many sets of known boundary
constraints it is possible to derive an exact analytical expression for the mode shapes Wi(x). Following
Blevins [19], for a fixed-free beam of uniform cross section in free vibration, we have

Wi(x) = cos(βix)− cosh(βix)−
cos(βiL) + cosh(βiL)

sin(βiL) + sinh(βiL)
(sin(βix)− sinh(βix)) (3)

where L is the length of the beam and βi is a constant specific to the boundary conditions and mode. The
analytical solutions of Blevins [19] were used to create a simulated dataset of a fixed-free beam in free
vibration. The first four modes of the beam were investigated, with plots of the mode shapes, Wi(x), and
oscillatory behaviour, Ti(t), shown in Figure 3.

Figure 3: Wi(x) and Ti(t) plots of the first four modes of a simulated cantilever beam in free vibration.

It is worth noting that the main focus of this case study is not to minimise prediction error on a test set,
as for the cantilever beam simulated this could be achieved through an analytical solution. The aim here is
to investigate how to vary the level of physical knowledge incorporated within a machine learning model
and discuss the effects this will have. At one extreme would lie “complete knowledge”, i.e. the analytical
solutions of Blevins [19] and Rao [18], whilst a purely data-based approach would represent zero prior
knowledge.
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2.1 Relaxing assumptions through kernel design

The construction of physics-based (white-box) models requires the approximation of phenomena and a re-
liance on assumptions and simplifications remaining representative. In the case of a cantilever beam these
may include a perfectly fixed beam, a uniform beam cross section or homogenous material properties. When
assumptions hold, physics-based models often provide efficient, accurate solutions to a range of engineer-
ing problems. However, the usage of physics based models when their assumptions breakdown can lead to
significant increases in error. For a cantilever beam, examples of this might range from a non-uniform cross
section of a turbine blade or aircraft wing, marine growth along the length of an offshore monopile or a soil
foundation being approximated as fixed. The relaxing or removal of assumptions within a physics-based
model will therefore allow for the widening of conditions in which the model may be used. Examples of
restricted modelling cases are summarised in Table 1.

Table 1: Summary of assumptions and modelling restrictions within the analytical expressions of Blevins
[19] and Rao [18] for a fixed-free beam in free vibration.

Modelling assumption Restrictive modelling case

Uniform cross section. Non-uniform cross section of a turbine blade
or aircraft wing.

Perfectly fixed base. Deflection of structures within soil or sea bed
foundations [20].

Homogeneous material properties. Composite materials with directional material
properties.

Equal mass distribution along the
length of the beam.

Marine growth adding mass along the length
of offshore monopiles [21].

Many key restrictions of the physics-based model of the cantilever beam come from the analytical expression
for the mode shape, Wi(x), which is specific to the boundary conditions of the beam. This paper suggests
a means of removing these restrictions, accounting for partial knowledge by combining different covariance
functions, each to capture different components of the combined target function. For the beam where we
are assuming that mode shapes are unknown, we have the situation where the displacement we wish to
predict is a product of oscillatory behaviour and those unknown modes, Y (x, t) = W (x)T (t) where W (x)
is unknown. The covariance of Y in this case is equal to cov(Y, Y ′)=KW (x, x′)KT (t, t

′). Here we use the
SE kernel to model the covariance, KW , of the unknown mode shapes:

KSE(τ) = σ2
fexp

(
−1

2
(τ)TΛ−1(τ)

)
+ σ2

nδij (4)

where σ2
f is the signal variance, σ2

n is the noise variance, Λ is the matrix of length scales such that diag(Λ) =
[l21, l

2
2, ..., l

2
D] for a D dimensional input and τ = x− x′ is the distance between a pair of input points x and

x′. To capture the covariance of the oscillatory behaviour, KT , we employ the derived SDOF kernel [22]:

KSDOF (τ) =
σ2

4m2ζω3
n

e−ζωn|τ |
(
cos(ωdτ) +

ζωn

ωd
sin(ωd|τ |)

)
(5)

where the hyperparameters of the kernel now relate to physical properties of a SDOF oscillator: m is the
mass, ζ = c/2

√
km is the damping ratio, ωn =

√
k/m is the natural frequency and ωd = ωn

√
1− ζ2 is

the damped natural frequency. Draws from this kernel are constrained to obey the behaviour of a decaying
SDOF oscillator, a useful property to encode.
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For the prediction of the full beam response, the SE and SDOF kernels are multiplied together to predict the
response contribution of a single mode i. These kernel products may then be summed for a given number of
modes N to predict the combined response of the beam. This will lead to a combined kernel structure of

K(τx, τt) =

N∑

i=1

Ki
SE(τx)︸ ︷︷ ︸
Mode
shape

Ki
SDOF (τt)︸ ︷︷ ︸
Oscillatory
behaviour

+ σ2
nδij︸ ︷︷ ︸

Noise

(6)

where τx = x− x′ and τt = t− t′ represent distances between points in the spatial and temporal inputs re-
spectively. The combined model has the flexibility to recover Wi(x) and Ti(t) with an important distinction;
the analytical form of the cantilever mode shape has not been fixed and the corresponding assumptions used
to construct it have been relaxed.

2.2 Recovery of mode shapes

An important test for the constructed model is the recovery of the mode shapes Wi(x) and temporal func-
tions Ti(t) from the combined response of the beam. Although the simulated beam will obey the analytical
expressions for Wi(x), this constraint was removed from the model structure via the introduction of the SE
kernel. As such, the capability of the model to recover the mode shapes is a useful property to measure.
The use of a simulation is useful for this case as it allows the exact mode shapes used to construct the re-
sponse to be compared with the predictions and performance levels to be measured. Eight evenly spaced data
points were selected along the length of the beam as training points, with the response simulated at 8192Hz.
Model performance was measured on an unseen test set of 100 points along the beams length simulated for
one second.

To extract the mode shapes from the combined beam response prediction, the posterior contributions for each
mode i within the kernel sum will require decomposition. This was achieved through the use of Gaussian
conditionals, following [23], with details provided in Appendix A. The predictive performance for each mode
was measured using two metrics: the Normalised Mean Square Error (NMSE) and the Mean Standardised
Log Loss (MSLL). The MSLL is a probabilistic measure, with superior models having more negative scores.
A breakdown of predictive performance is shown in Table 2 and plots of the recovered W1:4(x) and T1:4(t)
are shown in Figure 4

Table 2: Modal performance breakdown of beam response prediction.

Model target Function NMSE (%) MSLL

First mode
W1(x) 0.002 −5.472
T1(t) 0.411 −3.088

Second mode
W2(x) 0.225 −3.520
T2(t) 0.285 −2.677

Third mode
W3(x) 9.949 −1.118
T3(t) 0.240 −2.055

Fourth mode
W4(x) 1.221 −2.522
T4(t) 0.541 −1.969

A key trend observed within Table 2 is that performance generally worsens for the higher modes of the
beam. This is to be expected for a number of reasons; firstly, the mode shapes are more complex for the
higher modes, meaning that the same eight spatial points measured along the beams length must be used to
represent additional, sharper changes in direction. The magnitude of vibration of the higher modes was also
significantly lower, making identifying a modes contribution from the full response more challenging. A
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Figure 4: Breakdown of recovered W1:4(x) (left column) and T1:4(t) (right column) from a cantilever beam
in free vibration by a combined kernel of the form K(τx, τt) =

∑4
i=1K

i
SE(τx)K

i
SDOF (τt) + σ2

nδij . All
models observed eight evenly spaced points along the beams length at time points [1:2:2000] as training
data.

useful property of the SDOF kernel for identifying modal contributions was having physically interpretable
hyperparameters, specifically the natural frequency ωn. The first four natural frequencies of the beam were
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able to be identified and the corresponding hyperparameters fixed within the kernel. This reduced the number
of required hyperparameters to optimise whilst encouraging the model to learn the response contributions at
specific frequencies. Physically interpretable hyperparameters provide an avenue through which knowledge
may flow in and out of a system. If parameters are learnt instead of fixed, optimisation can provide a means
of retrieving this information from the system.

Within the plots of W1:4(x), the ability of the model to recover the mode shapes is observed. A useful
property of the GP here is the quantification of uncertainty within predictions. For the first mode, where an
excellent fit is achieved, a narrow confidence interval indicates the model is certain in its prediction. For
W3(x), behaviour indicative of an underestimation of the lengthscale within the SE kernel is observed. The
influence of observed points decays very quickly with distance and the model attempts to revert to its zero
prior between the training points along the length of the beam. The confidence intervals of the GP expand
quickly within these areas to reflect this however, preventing an overconfident, incorrect prediction.

One of the major advantages of including physical knowledge within a model is improving the ability to
extrapolate. This can be seen in the T1:4(t) plots within Figure 4, where the model continues to predict
beyond the end of observed training data (Dotted line). The behaviour of a decaying SDOF oscillator is
encoded within the design of the SDOF kernel and has shown to be useful when conditioning models on
a reduced quantity of data [22]. An important consideration when using prior knowledge to extrapolate
however is any assumptions present within the construction of the model.

3 The balance between physics and data

Relating back the proposed model structure to Figure 1, it can be useful to consider how this changes the
models relative position on the scale of prior knowledge inclusion. By relaxing the assumptions made within
the physics-based model, the reliance on data has increased. If unsure about whether assumptions of a
physics-based model may hold, e.g. the examples presented within Table 1, the inclusion of them has the
potential to cause overly confident, erroneous model predictions. Were these assumptions maintained, for
example via the inclusion of a mean function, a higher reliance on the physics-based component would be
achieved, thereby moving the models position on the scale.

The balance between physics and data within a model is an important consideration within the construction
of physics-informed machine learning models. Figure 5 highlights the concept of an optimum level of prior
knowledge inclusion for a specific modelling scenario. A modelling scenario here is categorised by its
relative levels of available knowledge and data. Ideally, one would wish for both high levels of data and prior
knowledge, for example, a heavily sensored structure in well defined laboratory conditions; however in real
life industrial applications this would be rarely achievable. In circumstances when neither knowledge or data
is abundant, the predictions of models may often be unreliable or erroneous.

The concept of an “optimum” level of prior knowledge within a model should be considered when devel-
oping models along with the consequences of incorrect placement on the scale. The over inclusion of prior
knowledge within a model can lead to a higher reliance on the physics-based component of the model which
may not accurately represent the modelled system or phenomena. This can lead to reduced model flexibility
and overly confident models. An under inclusion of prior knowledge may waste a key resource, useful for
increasing model interpretability and capabilities in extrapolation. Models with reduced prior knowledge
inclusion will rely more heavily on available data, increasing the demand for expensive data collection.

4 Further investigations

The work done so far has highlighted potential model structures for the relaxing of assumptions imposed
on the vibration of a cantilever beam, however the initial testing of the model has focussed on a simulated
dataset, representing an idealised case. The aim for future work is to implement and test the methods on a
measured dataset, for which the assumptions made in the analytical formulas of Blevins [19] and Rao [18]
would be less valid.
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Figure 5: The concept of an optimum level of prior knowledge inclusion within a physics-informed machine
learning model for a given modelling scenario. Examples of incorrectly estimating a models placement on
the scale, leading to an heavy reliance on physics or data are shown.

The authors are currently running experiments on a monopile structure submerged within a wave tank. The
response data should provide an interesting case study with which to test future model designs. For example,
the presence of water around the structure has a significant impact on the relative damping. Testing the
structure in dry conditions and within the tank could investigate how this affects the response of the structure
and how well the model can cope with this change. There is also a mass at the top of the structure, to
represent the rotor and nacelle of a wind turbine, which will change the natural frequencies and mode shapes.
Gradually increasing the added mass at the top of the structure could investigate how the response of the
structure changes.

5 Conclusions

The idea of an optimum level of prior knowledge to be included within a model changing depending on the
modelling scenario was highlighted within the context of a cantilever beam in free vibration. The benefits of
achieving this optimum level such as improved extrapolation, interpretability and reduced reliance on data
collection were discussed. Consequences of being incorrectly placed on the scale of prior knowledge inclu-
sion were also presented. These included reduced flexibility and potential reliance on unrealistic assumptions
for a physics-heavy model and poor extrapolation, interpretability and increased demand for data collection
for a data-heavy model.

The model developed within this paper explored a scenario where only partial prior knowledge was available
and it was assumed the assumptions used to construct physics based models could not be guaranteed to hold.
These assumptions were relaxed through the use of kernel design within a GP. The mode shapes of the beam,
for which the analytical solutions were removed from the model as to relieve specific boundary conditions,
were able to be recovered for the first four modes of the beam.
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Appendix

A Conditional predictive distribution of additive kernel components

As derived in [23], the conditional predictive distribution of a kernel Ki within a kernel sum of the form
K =

∑i=n
i=1 Ki is expressed:

p(f∗
i |f∗, X∗,f , X,θ) ∼ N (µ∗

1 +K∗T
i (

i=n∑

i=1

Ki)(y − µ1 − µ2),K
∗∗
i −K∗T

i (

i=n∑

i=1

Ki)K
∗
i ) (7)

For the contribution of Ki
SEK

i
SDOF within

∑i=n
i=1 K

i
SEK

i
SDOF + σ2

nδij , assuming a zero mean GP:

p(f∗
i |f∗, X∗,f , X,θ) ∼ N ((Ki

SEK
i
SDOF )

∗T (
i=n∑

i=1

Ki
SEK

i
SDOF )y,

(Ki
SEK

i
SDOF )

∗∗ − (Ki
SEK

i
SDOF )

∗T (
i=n∑

i=1

(Ki
SEK

i
SDOF ))(K

i
SEK

i
SDOF )

∗)

(8)

To obtain Wi(x) and Ti(t) from the posterior contribution of Ki
SEK

i
SDOF , the GP is used to predict whilst

keeping either x or t fixed and varying the other. The result is then divided by the magnitude of the fixed
function.
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