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Abstract
This article describes a new adaptive Kriging method designed to alleviate the limitations of other related
approaches encounter in cases of extremely rare failure events. The main idea is to iteratively reduce both
surrogate modelling error and sampling error. To do so the adaptive Kriging framework is associated with the
multiple adaptive importance sampling scheme where the auxiliary distribution is iteratively built as a near-
optimal Gaussian mixture. The estimator associated with he Gaussian mixture importance sampling is given
as well as a stopping criterion based on both the estimated sampling and modelling error. The performances
are finally illustrated on two benchmark problems.

1 Introduction

The probabilistic framework is the most common to approach uncertainty quantification (UQ) problems for
industrial application. In this framework the uncertain parameters are modelled as random variables de-
fined by a joint distribution aimed at being representative of their actual aleatory uncertainty. For the case
of reliability analysis, the failure event is then defined as a function of a performance metric of the system
studied and formulated in a so-called failure criterion. The framework also assumes a deterministic black-
box relationship called a performance function is available linking the input parameters and the performance
metric (e.g. a physics-based model of the system). The reliability problem lies in the fact that the output
performance is then a random variable with an unknown distribution defined as the image of the input joint
distribution through the performance function. The goal of a reliability analysis is then to quantify the proba-
bility of occurrence of the failure event related to the unknown output distribution. In addition, in most cases
the performance function is not known analytically and its evaluation is costly (experimental or computation
costs). The aim of reliability methods is then to estimate accurately the probability of occurrence of the
failure event using the least amount of calls to the performance function.

The most common methods of solving this type of problems are based on random sampling approaches
where the probability of occurrence of the event is estimated statistically by evaluating its occurrence rate in
a dedicated population. While being quite straightforward, these approaches induce a statistical estimation
error, sometimes called sampling-error and simply due to the limits of inferring a general statistical quantity
from a finite population. The methods use a so-called estimator allowing to approximate the quantify of
interest from the statistical properties of the population, and the variance of this estimator can be used as an
indicator of the sampling error. In the context of reliability analysis the size of the population is of crucial
importance to limit the computation burden. Therefore many sampling methods have been proposed to find
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the best compromise between population size and variance of the estimator. Well know examples include
Monte-Carlo [1], importance sampling [2], subset-simulations [3, 4], line-sampling [5, 6] or directional
sampling [7].

Another approach to reduce the computation burden of reliability analysis called surrogate modelling has
gained increasing popularity in the last few decades. The idea is to replace the physics-based performance
function by an analytical emulator previously calibrated to mimic its behaviour. The advantage is that sur-
rogates are usually orders of magnitude faster to evaluate than the physical model. The failure probability
associated with the surrogate model can then be estimated with regular sampling methods using large pop-
ulations at a limited computation cost. Many mathematical objects have been proposed to build surrogates,
the most famous include response surface approaches [8], support vector machine [9], neural networks [10],
polynomial chaos expansion [11] or Kriging (i.e. Gaussian processes) [12, 13]. The calibration of the sur-
rogate relies on a set of samples called a design of experiment (DoE) for which the actual physical model
has to be evaluated. This is why the calibration represents the main computation burden of the approach.
In addition it induces another error called the modelling error due to the imperfection of the surrogate and
which depends on the quality of its calibration. The goal of surrogate approaches is therefore to find the best
compromise between the extent of the DoE and the modelling error associated with the failure probability.

Among the above-listed surrogate models, Kriging provides a useful feature in the shape of a localised
estimation of its own accuracy. This estimation allowed the development of so-called adaptive-Kriging
approaches where the goal is to attractively build a near-optimal DoE. The general idea stems from the
realization that all areas of the input space do not have the same contribution to the estimation of the failure
probability. Therefore the goal is to refine the calibration of the surrogate in areas of high contribution and
avoid spending computation efforts calibrating areas of low contribution. This process is done iteratively
using a so-called learning function classifying the candidate samples to select the most promising one to be
added to the DoE. This approach was first introduced in the context of global optimization through the EGO
method [14] and further popularized for the reliability analysis with the AK-MCS method [13]. For a more
detailed overview of the adaptive-Kriging (AK) approaches the reader is referred to the work of Moustapha
et al. [15]. This framework allows the algorithm to efficiently reduce the modelling error but when associated
with a sampling method the sampling error then acts as an upper bound of the precision of the method. It is
generally assumed that the sampling error will be negligible compared to the modelling error, but in cases
of rare failure events this assumption can be wrong. Moreover, concluding regarding the validity of this
assumption might only be possible after spending considerable computation efforts calibrating the surrogate
on an ill-fitted population. These limitations motivated the development of a new adaptive Kriging method
aimed at iteratively reducing both the modeling and the sampling error simultaneously and converging toward
the failure probability no matter how rare the failure event.

The paper is organised as follows: section 2 presents the method in details, in section 3 the method is applied
on two benchmark problems and the results are compared with a reference method from in the literature.
The paper finally is concluded in section 4 with a brief summary and discussion.

2 Description of the method

The specificity of the proposed method lies on the way its population is build. As mentioned in the introduc-
tion the challenge with sampling-based reliability methods is to find a good compromise between the size
of the population and the variance of the estimator. With respect to this compromise AK approaches can be
sorted into two categories. The first one includes the vast majority of methods and consists in de-correlating
the reduction of the sampling error with the reduction of the modelling error. The idea is either to run a
preliminary analysis to define a semi-optimal population and then run the AK procedure to optimize the cal-
ibration of the surrogate, or to start by calibrating the surrogate and then generate an appropriate population.
In both cases running the two optimization separately necessarily induce some loss of efficiency since the
optimal population and the optimal DoE are deeply interdependent. These methods include AK-MCS [13],
AK-IS [16], AK-MCMC [17], Meta-AK-IS2 [18]. The second approach is to include the reduction of the
sampling error in the AK procedure, coupled with the reduction of the modelling error. Much fewer methods
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have been proposed within this framework, the most notable being probably the work of Balesdent et al.
combining adaptive Kriging with non-parametric adaptive importance sampling [19].

The method proposed in this paper falls into the second category, combining adaptive Kriging with multiple
importance sampling in a scheme where the optimal auxiliary distribution is approximated by iteratively
building a Gaussian mixture. Its principle is that new Gaussian terms are iteratively added to the mixture
based on a variance reduction criterion, new samples are then drawn from this Gaussian distribution and
added to the overall mixture population. Both the refinement of the DoE and the auxiliary distribution are
based on the Kriging surrogate estimations to keep the computation burden minimal. The method is finally
associated with a stopping criterion considering both the expected modelling and sampling error.

In this section the method is presented in details starting with the multiple importance sampling estimator.
The dedicated learning function allowing the definition of the DoE is discussed in section 2.2 and the sam-
pling strategy allowing the definition of the auxiliary distribution is presented in section 2.3. Finally, in
section 2.4 the stopping criterion is discussed with a flowchart of the method.

2.1 The estimator

In the proposed method the failure probability is ultimately estimated using a dedicated importance sampling
scheme, where the auxiliary distribution is a potentially complex mixture of simple ones. This approach
has been proposed before in various context [20, 21, 22] and will be referred to in this paper as multiple
importance sampling.

Consider X a d-dimensional input random vector defined by the joint distribution f . The performance
function of the system studied g is defined in such a way that a negative value of g indicates a failure. The
failure probability Pf can be expressed analytically as follows:

Pf =

∫

Rd

I(X)f(X)dX (1)

with I a classification function associating a zero to safe samples and ones to failing samples. The prin-
ciple of Monte-Carlo simulation is to approximate this integral numerically from a population SMC =
{X1, ..., XNMC

} of NMC ∈ N∗ independent, identically distributed (i.i.d.) samples drawn from f . The
associated estimator is the following:

PMC =
1

NMC

NMC∑

i=1

I(Xi) (2)

Those well known developments (see e.g. [23]) are a good starting point to illustrate the importance sam-
pling estimator. The idea behind importance sampling is to draw the population of i.i.d. samples from
a different distribution than f and called an auxiliary distribution h. This distribution is chosen from a
variance-reduction point of view and, in broad terms, is aimed at generating more failing samples than an
Monte-Carlo population. Of course drawing the samples form a different distribution induces a bias in the
estimator that has to be compensated for with a dedicated weight factor as follows:

P IS =
1

NIS

NIS∑

i=1

I(Xi)
f(Xi)

h(Xi)
(3)

Before discussing the dedicated multiple importance sampling estimator, it is necessary to clarify the nature
of the population used in this approach and the associated auxiliary distribution. The detailed sampling
strategy is given in section 2.3 but the basic idea is as follows. The algorithm start with a very scarce Monte-
Carlo population of n1 samples. Then at each iteration k, a new Gaussian distribution hk is picked from a
variance-reduction criterion and nk new samples are drawn from it. The overall aggregated population Sk is
therefore composed of k sets of samples drawn from k different Gaussian distributions. It can be shown that
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such a population is equivalent to an i.i.d. population drawn from the mixture distribution of all auxiliary
ones weighted by the proportion of samples drawn from each (see e.g. [21, 24]). The corresponding mixture
distribution can be defined as follows:

wk =
1

Nk

k∑

i=1

nihi (4)

with Nk =
∑k

i=1 ni the size of the overall aggregated population. It can finally be shown that the following
expression represents an unbiased estimator of the failure probability with respect to the previously described
population:

PMIS =
1

Nk

Nk∑

i=1

I(Xi)
f(Xi)

wk(Xi)
(5)

In this expression the classification function I is the one that requires the evaluation of the performance
function, and is thus responsible for most of the computation burden of the analysis.

2.2 The adaptive Kriging scheme and the learning function

Kriging is a type of surrogate model that is based on the calibration of a Gaussian process. Even though a
detailed description of Kriging surrogates would be out of scope for this work a brief overview is proposed
in this section. In simple words, to every input vector X a Kriging surrogate associates a Gaussian random
variable ĝ(X) ∼ N(µ̂(X), σ̂(X)) with µ̂ and σ̂ respectively called the posterior mean and standard deviation
to emphasize the Bayesian nature of Kriging calibration. For more details about Kriging models the reader is
referred to useful dedicated material such as the manuals of Kriging toolboxes [25] or [26]. In the context on
this work the posterior mean µ̂ will simply be considered as the Kriging estimation of the performance and
σ̂ is used as an indicator of the level of confidence associated with this estimation. The function that will be
emulated is the performance function g, its surrogate counterpart being noted ĝ and being equivalent to the
posterior mean. From this function a surrogate counterpart can also be derived for the classification function
called Î . The estimator defined in the previous section can then be estimated using the surrogate instead of
the actual model as follows:

P̂MIS =
1

Nk

Nk∑

i=1

Î(Xi)
f(Xi)

wk(Xi)
(6)

The motivation behind adaptive-Kriging approaches stems from the realization that all samples in the input
sample do not contribute to the estimation of the failure probability in the same way. Therefore an efficient
DoE would focus on refining the calibration of the surrogate on areas of great contribution and avoid losing
computation time refining the calibration of areas of lesser influence. The adaptive-Kriging scheme therefore
aims at taking advantage of the posterior standard deviation to iteratively select the samples of the DoE that
have the highest expected contribution to the modeling error. The role of the so-called learning function is
simply to sort the samples according to their contribution to the modelling error.

The learning function defined in [13] and associated with the AK-MCS method is used as a starting point
for the definition of the ones dedicated to the present work. This learning function is based on the simple
acknowledgement that the only modelling errors that contribute to the MC estimator are the ”misclassifi-
cations” of samples, i.e. when a safe sample is tagged as failing by the surrogate or vise-versa. Since a
failure is associated with a negative value of the performance function, this error is synonym of the surrogate
being mistaken about the sign of the performance of a sample. Given the Gaussian nature of the the Kiging
prediction, a convenient metric to assess the potential error associated with a prediction is the probability of
misclassification U that can be efficiently formulated as follows:
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U(X) = Φ

(−|µ̂(X)|
σ̂(X)

)
(7)

with Φ the standard normal cumulative distribution function. In order to define a dedicated learning function
it is proposed to develop the expected modelling error as follows:

E
(
|∆PMIS |

)
= E

(
|PMIS − P̂MIS |

)
= E

(∣∣∣∣
1

Nk

Nk∑

i=1

f(Xi)

wk(Xi)

(
I(Xi)− Î(Xi)

)∣∣∣∣
)

(8)

Equation (8) unfortunately provides an aggregated metric that does not inform us on the individual contri-
bution of the samples with respect to the overall expected error. It is therefore proposed to focus on the
following upper bound of the expected error which much easier to work with:

E
(
|∆PMIS |

)
≤ 1

Nk

Nk∑

i=1

f(Xi)

wk(Xi)
E
(∣∣I(Xi)− Î(Xi)

∣∣) (9)

It can be shown (e.g. [27]) that E
(∣∣I(Xi) − Î(Xi)

∣∣) is actually equivalent to the function U defined in
equation (7). The upper bound can then be simplified as:

E
(
|∆PMIS |

)
≤ 1

Nk

Nk∑

i=1

f(Xi)

wk(Xi)
Φ

(−|µ̂(Xi)|
σ̂(Xi)

)
(10)

Finally, due mainly to computation limitations, Kriging surrogates have the tendency of underestimating
their precision near well-calibrated areas which can result in the algorithm over-exploiting and not exploring
enough the input space. In order to alleviate this issue a hyper-parameter p is introduced in the shape of
a power factor affected to the posterior standard deviation. This parameters is only used for the learning
functions of the algorithm and it is not considered in the evaluation of the failure probability or the stopping
criteria detailed in section 2.4. The following learning function UMIS is therefore defined as follows:

UMIS
k (Xi) =

f(Xi)

wk(Xi)
Φ

(−|µ̂(Xi)|
σ̂p(Xi)

)
(11)

The above learning function is quite explicitly a generalization of the U function for populations of samples
drawn from a mixture of auxiliary distributions. The term considering the probability of misclassification
is present and weighted by the contribution of the sample to MIS estimator. Considering k iterations of the
algorithm have been performed, the next sample to add to the DoE is called XDoE∗

k+1 and is defined as follows:

XDoE∗
k+1 = arg max

X∈Sk

UMIS
k (X) (12)

2.3 The sampling strategy

As introduced in section 2.1 the sampling strategy deployed in this method can be seen as a type of im-
portance sampling. In this context it is possible to derive an analytical expression of the optimal auxiliary
distribution from the expression of the estimator given in equation (3). Unfortunately this expression de-
pends on the performance function which is unknown analytically, the goal in this section is then to use the
Kriging surrogate to iteratively build a near-optimal auxiliary distribution.

Other methods have been proposed in this direction for example using the non-parametric adaptive impor-
tance sampling method [28, 19]. A difficulty faced by those approaches is that they usually involve distri-
butions that are hard to draw samples from and require the usage of advanced sampling methods such as
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Markov-Chain Monte-Carlo sampling [29], which could cause implementation difficulties on their own. In
this work it is proposed to introduce two simplifications to alleviate those difficulties. First, as introduced in
section 2.1 the optimal distribution is approximated by a Gaussian mixture from which samples can be gen-
erated with classical semi-random number generators. Second, the problem of choosing the Gaussian terms
of the mixture is further simplified by using the framework of the original mean-shift importance sampling.
In other words, the problem is solved in the standard space and all individual Gaussian distribution is given
a unit standard deviation. Therefore finding the next optimal Gaussian term of the mixture simply consists
in finding the coordinates of the optimal mean.

In order to clarify the definition of this optimal mean coordinates, let us consider k iterations of the algorithm
have been computed and develop the expression of the variance of the estimator defined in equation (5):

var
(
PMIS

)
=

1

Nk+1
var

(
I(X)

f(X)

wk+1(X)

)
=

1

Nk+1

(
E

(
I2(X)

f2(X)

w2
k+1(X)

)
− P 2

f

)
(13)

The optimal distribution corresponds to a variance of zero and thus to the following equality holds:

E

(
I2(X)

P 2
f

f2(X)

w2
k+1(X)

)
= 1 (14)

wk+1 = If
Pf

is a solution for of this equation and from the definition of the mixture given in equation (4) the
following expression can be developed:

1

Nk+1

k+1∑

i=1

nihi(X) =
I(X)f(X)

Pf
(15)

It should be noticed that all hi distribution are given at this stage of the algorithm, only the optimal h∗k+1 is
to be determined. Its expression can then be isolated and developed as follows:

h∗k+1(X) =
Nk + nk+1

nk+1

I(X)f(X)

Pf
− Nk

nk+1
wk(X) (16)

Of course this expression depends on the classification function I and the actual failure probability Pf that are
both unknown. The first intuitive simplification is to replace both by their surrogate counterpart respectively
Î and P̂MIS . The problem is then further simplified using the classical mean-shift importance sampling
strategy which consist in choosing h∗k+1 as a Gaussian distribution of unit standard deviation and choosing
its mean coordinates XAux∗

k+1 such that it maximizes equation (16). This strategy can be seen as choosing the
Gaussian distribution such that its mode matches the mode of the optimal auxiliary. The coordinates of the
optimal mean XAux∗

k+1 can then be defined by solving the following optimization problem:

XAux∗
k+1 = arg max

X∈Rd

(
Nk + nk+1

nk+1

Î(X)f(X)

P̂MIS
− Nk

nk+1
wk(X)

)
(17)

The above expression allows us to define for each iteration a near-optimal Gaussian distribution considering
the current calibration of the Kriging model and the current mixture distribution. nk+1 samples are drawn
from this distribution and added to the overall population. The development of a complex strategy to define
an optimal nk+1 is out of scope for this work. Instead it has simply been chosen to add a constant number of
ten thousand samples per dimension and per iteration n = d ∗ 1e4.

2.4 The stopping criterion

The algorithm is aimed at minimizing simultaneously both the modelling and sampling errors. It is therefore
intuitively proposed to define a stopping criterion as the intersection of two criteria focused on each type of
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error. The modelling error criterion is based on the convenient upper bound of the expected total error as
defined in equation 11. A conservative threshold Estop = 4% is then defined such that the modelling error
criterion is satisfied when the following equation is satisfied.

1

Nk

Nk∑

i=1

UMIS
k (Xi) ≤ Estop (18)

The criterion related to the sampling error is based on the development of the variance of the estimator as
defined in equation (13). This variance is then estimated using the surrogate counterparts of the classification
function I and failure probability Pf . In addition the variance is estimated numerically from the available
population Sk to avoid any additional computation burden.

ˆvar(PMIS
k ) =

1

Nk

(
E

X∈Sk

(
I2(X)

f2(X)

w2
k(X)

)
− (P̂MIS)2

)
(19)

Finally the variance is normalized by the current estimate of the failure probability and compared to a thresh-
old coefficient of variation CoVstop = 0.4% such that the criterion is satisfied when:

√
ˆvar(PMIS

k )

P̂MIS
≤ CoVstop (20)

The algorithm finally stops when both criteria are satisfied simultaneously. To conclude the presentation of
the method a simplified flow chart is given in figure 1.

Initial MC

 population
Initial LHS

DoE

Stopping criterion

reached

Calibration

Kriging model
Enrichement 

of the DoE

Enrichement

of the population

Calculation of the 

failure probability

yes

no

Figure 1: Simplified flowchart of the algorithm

3 Applications

In order to illustrate its performances, the proposed approach is applied to two benchmark analytical ex-
amples previously studied with the AK-MCS method [19] and well known for being troublesome to solve.
In addition, it is proposed to observe how the performances scale with the failure probability. Therefore
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each example function is considered with three sets of hyper-parameters inducing increasingly lower failure
probabilities. For those application the Kriging surrogate is considered with a anisotropic Matern 5/2 covari-
ance function. The initial design of experiment consist in a Latin hypercube design, centered on zero and
containing d+ 3 samples. The power parameter p defined in section 2.2 chosen equal to three.

Since the result of the analysis depends on random sampling its performances are stochastic. Each analysis
is therefore performed ten times and the performance metrics are presented in terms of their mean value.
The main metrics considered are the number of calls to the performance function, the covariance of the
estimator and the error compared to a reference value of the failure probability. For comparison the results
are compared with the AK-MCS method in terms of performances and a Monte-Carlo estimation of the
failure probability is used as a reference. The implementation of AK-MCS considers an anisotropic Matern
5/2 covariance function, an initial design of experiment of ten Latin hypercube samples and a Monte-Carlo
population of min

(
500
PMC , 5e6

)
samples. This population is chosen to result in a coefficient of variation of

the estimator around 5%. The covariance of the proposed method is estimated as given in equation 20 and is

estimated both for Monte-Carlo and AK-MCS as C.O.V. =
√

1−PMC

PMCnMC
.

It should be noted that the size of the population for AK-MCS implies a prior knowledge about the order
of magnitude of the failure probability, which is not considered for the application of the proposed method.
Unfortunately the performances of AK-MCS depend on the size of the population, therefore taking a default
(very large) population would result in very high number of calls and very low coefficient of variation. For
the sake of fairness in the comparison the size of the population is therefore chosen such that the sampling
error of AK-MCS is reasonably low (around 5%). However for very small failure probabilities such an
approach would induce prohibitory high computation times and is therefore capped at 5e6 samples.

3.1 A function with four failure modes

The first example is a a well known function with four failure modes, designed to challenge the methods
relying on identifying a design point. This examples is in dimension two with both independent random
inputs x1,2 following a standard normal distribution. The performance function reads as follows:

∀x ∈ R2, g(x1, x2) = min





k1 +
1
10(x1 − x2)

2 − 1√
2
(x1 + x2)

k1 +
1
10(x1 − x2)

2 + 1√
2
(x1 + x2)

x1 − x2 +
k2√
2

−(x1 − x2) +
k2√
2

(21)

with k1 and k2 two parameters that can be chosen by the user. In this application three cases will be con-
sidered with respectively (k1, k2) = {(3.5, 7), (4.5, 9), (5.5, 11)} and corresponding to increasingly smaller
failure probabilities.

The performance of the proposed method are first illustrated on figure 2 with the converged mixture popu-
lation and estimated limit-state for each case. The figure displays in blue (respectfully red) samples that are
expected to be safe (respectfully failing) according to the Kriging surrogate. In addition the samples of the
DoE are displayed with black crosses and the centers of the Gaussian auxiliaries with green circles. It can
be seen that the algorithm successfully explores the input space and locates every major failure mode on all
cases. As a frame of reference the three cases are respectfully associated with failure probabilities of around
e− 3, e− 5 and e− 7.

The performances are further illustrated in figure 3 with the convergence of the estimated failure probability
compared with the one estimated with Monte-Carlo. The figure displays as a blue surface the amplitude of
the estimated failure probabilities over the ten applications of the method. It can be seen that the method
very efficiently and consistently converges toward the correct value, and that the order of magnitude of the
failure probability has little influence on the pace of convergence.

Finally the performances of the method are quantitatively compared with those of the classical AK-MCS
method on table 1. It should be noted that for the third case the failure probability is too low to allow AK-

USD – METHODS 4992



MCS for converging with the considered population size, the corresponding results are therefore left blank.
The exhibited performances are very good compared with AK-MCS with two to three times fewer calls to
the performance function, a very small coefficient of variation and very good accuracy (less than 3% error).
The results are very consistent on the three cases considered with a very limited influence of the order of
magnitude of failure probability. It is also noticeable that the modeling error and coefficient of variation are
consistently lower than the threshold value chosen in section 2.4.

(a) k1 = 3.5, k2 = 7 (b) k1 = 4.5, k2 = 9 (c) k1 = 5.5, k2 = 11

Figure 2: Illustration of the converged population and Kriging calibration of the limit state for example 1 on
the three cases a, b and c

(a) k1 = 3.5, k2 = 7 (b) k1 = 4.5, k2 = 9 (c) k1 = 5.5, k2 = 11

Figure 3: Convergence plot of the estimated failure probability compared with the Monte-Carlo reference
for example 1 on the three cases a, b and c

3.2 Response of a non-linear oscillator

The second benchmark example is the response of a non-linear undamped oscillator with a single degree
of freedom as illustrated on figure 4. The problem is in dimension six with all random parameters taken
independent and defined by normal distributions as detailed in table 2. An extra parameter k3 is introduced
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Table 1: Results of the simulations on example 1

method P̂f ∆Pf [%] C.O.V. Ncalls

case1
k1 = 3.5
k2 = 7

MCS 7.58e− 4 − 0.26 2e8
AK-MCS 8.16e− 4 8.02 4.30 150
Proposed method 7.40e− 4 2.99 0.25 49.2

case 2
k1 = 4.5
k2 = 9

MCS 1.08e− 5 − 2.15 2e8
AK-MCS 1.06e− 5 2.44 13.7 124
Proposed method 1.06e− 5 2.67 0.29 54.4

case 3
k1 = 5.5
k2 = 11

MCS 5.95e− 8 − 2.91 2e10
AK-MCS − − − −
Proposed method 5.86e− 8 1.56 0.32 55.4

to artifically adjust the rarity of the failure event. Three cases are considered corresponding to respectively
k3 = {0, 0.5, 1}. The performance function reads as follows:

g(c1, c2,m, r, t1, F1) = k3 + 3r −
∣∣∣∣
2F1

mω2
0

sin

(
ω0t1
2

)∣∣∣∣ (22)

with c1 and c2 the stiffness of the springs, m the mass, F the applied load, Z the position of the mass, r the

maximum elongation before one of the springs yields and ω0 =
√

c1+c2
m .

Figure 4: Illustration of the nonlinear SDOF oscillator and pulse load

Table 2: Parameters of the distributions for example 2

Variable P.D.F Mean Standard deviation
m normal 1 0.05
c1 normal 1 0.1
c2 normal 0.1 0.01
r normal 0.5 0.05
F1 normal 1 0.2
t1 normal 1 0.2

The performances are illustrated on figure 5 with the convergence of the failure probability estimation. The
amplitude of the estimation over the ten performed analysis is displayed with a blue surface. It can be
observed that on all three cases the method efficiently converges toward the correct value with a limited
influence of the order of magnitude of the failure probability.

The results are finally compared quantitatively with those of the reference AK-MCS method on table 3. The
conclusions are similar than the ones drawn from example 1. On the first two cases AK-MCS is performing
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(a) k3 = 0 (b) k3 = 0.5 (c) k3 = 1

Figure 5: Convergence plot of the estimated failure probability compared with the Monte-Carlo reference
for example 2 on the three cases a, b and c

as intended with a good accuracy (around 5% error) coefficient of variation (around 4%) and a reasonable
number of calls to the performance function. On those two cases the proposed approach displays far superior
performances than AK-MCS with a consistently better accuracy, coefficient of variation and about half the
number of calls to the model.

On the last case the capped population of 5e6 samples is not enough for AK-MCS to reach a sufficient
accuracy. Therefore the algorithm terminates prematurely and, even though it only required sixteen calls to
the performance function it reached an error and coefficient of variation of about thirty percent. On the same
example the proposed approached exhibit good performances comparable to the other two cases.

Table 3: Results of the simulations on example 2

method P̂f ∆Pf [%] C.O.V. Ncalls

case1
k3 = 0

MCS 2.86e− 2 − 4.12e− 2 2e8
AK-MCS 2.98e− 2 4.40 4.31 35
Proposed method 2.76e− 2 3.57 0.22 17.7

case 2
k3 = 0.5

MCS 5.24e− 4 − 0.31 2e8
AK-MCS 4.87e− 4 6.40 4.62 41
Proposed method 5.22e− 4 1.36 0.22 24.5

case 3
k3 = 1

MCS 3.27e− 6 − 3.91 2e8
AK-MCS 2.20e− 6 32.7 30.2 16
Proposed method 3.36e− 6 2.61 0.24 31.7

4 Conclusions

A new reliability method has been proposed in the framework of adaptive-Kriging approaches. This method
is aimed at alleviating the limitations of most classical adaptive-Kriging approaches in cases of rare failure
events. To do so the proposed approach seeks to attractively reduce both the modelling and sampling errors
within the active learning scheme. The generation of the random is therefore done adaptively following a
Gaussian mixture distribution, a dedicated learning function and estimator are given as well as a tailored and
comprehensive stopping criterion.

The performances are illustrated on two classical benchmark problems and compared with the classical AK-
MCS method. Each problem is studied through three cases with increasingly lower failure probabilities to
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illustrate how the performances scale with the rarity of the failure event. On both examples and all cases the
proposed approach converged much faster than the reference AK-MCS methods while providing comparable
accuracy. In addition the proposed approach does not require any prior knowledge about the problem studied
while the performances of AK-MCS as shown in the analysis correspond to a best-case scenario where the
population size could be tailored to the problem. The analysis also highlighted how well the performances
scale with the rarity of the failure.

Overall the methods shows very promising results with many advantages such as very few hyper-parameters,
no prior knowledge needed and very good performances even on troublesome problems. However several
limitations still remain such as the poor performances of Kriging models on high dimensions. In addition
there exist opportunities for further improvement especially with the sampling part of the algorithm which
takes many simplifying assumptions. A quite straightforward lead for future work would be to not only look
for the optimum mean of the distribution but also include the standard deviation and the number of samples
drawn for the auxiliary. Adding these two parameters to the optimization would allow for more flexibility in
the definition of the Gaussian mixture which could result in a better approximation of the optimal auxiliary
and a faster convergence.
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