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Abstract
In the context of noise and vibration mitigation, passive damping treatments generally lead to low-cost
and robust structural vibration control. In many engineering problems, constrained viscoelastic patches
are added to the vibrating structure to increase the amount of damping. The efficiency of such damping
treatments depends on the fraction of strain energy in the core layer and the inherent damping properties
of the viscoelastic material. To design optimal damping treatments, the placement and the dimensions of
the viscoelastic patches, as well as the material properties of the viscoelastic material must be optimised.
The goal of this work if to present simple cost-effective techniques for the design of optimal constrained
viscoelastic treatments.

1 Introduction

The use of constrained viscoelastic materials has been regarded as a low-cost and robust strategy to reduce
noise and vibrations in many types of industrial applications [1]. In this configuration, the core viscoelas-
tic layer undergoes high shear deformations, which combined with the inherent damping properties of the
viscoelastic material, results in heat dissipation. The efficiency of this passive damping treatment depends
on material and geometric parameters, and is usually estimated through the structural modal properties:
eigenfrequencies and modal loss factors. However, the frequency dependency of the viscoelastic material
properties leads to a non-linear eigenvalue problem that cannot be solved by conventional numerical meth-
ods. Some methods allows to compute the exact solution of the nonlinear eigenvalue problem, such as the
asymptotic numerical method, but generally at great computational cost [2]. Therefore, in practice, the modal
parameters are estimated through approximate methods such as the Modal Strain Energy (MSE) method or
the Iterative Complex Eigensolution (ICE) method [3], or indirectly computed from frequency response
functions [4].
To design optimal damping treatments, the placement and the dimensions of the viscoelastic patches, as well
as the material properties of the viscoelastic layer must be optimised, usually by maximising the modal loss
factors. In a first approach, strain maps or strain energy maps can be successfully used to identify the poten-
tial optimal placement of constrained viscoelastic layers [5]. A more precise placement of the viscoelastic
patches and its dimensions can be determined using topology optimisation via SIMP, PSO, ESO or level-set
methods [6]. While a large number of approaches are proposed in the literature to optimise the distribution
of viscoelastic treatment for given materials, the determination of optimal material properties for a given
configuration is rarely investigated. More efficient and adaptive damping treatments may be obtained by
designing and manufacturing new elastomeric compounds and tailoring composite constraining layer. Some
parametric studies have demonstrated that a change in the moduli of the viscoelastic core and the elastic
faces can reshape the efficiency curve, while the loss factor of the viscoelastic material is directly propor-
tional to the damping treatment efficiency when the material damping of the elastic faces can be neglected in
comparison to the loss factor of the core layer [7].
The goal of this work is to investigate simple cost-effective techniques for the design of optimal constrained
viscoelastic treatments from a material perspective. The first step is to highlight the existence of an optimal
viscoelastic material. Then, a material optimisation is performed to maximise the efficiency of a viscoelastic
damping treatment on the whole frequency range.
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The paper is organised as follows. The implementation of linear viscoelasticity into the finite element method
is described in section 2. Section 3 presents some methods to evaluate the efficiency of damping treatments
through the calculation of modal loss factors. A numerical study is carried out in Section 4 to optimise the
properties of the viscoelastic core layer. Finally, conclusions and perspectives are discussed in Section 5.

2 Finite element modelling of viscoelastically damped structures

The behavior of viscoelastic materials is usually characterised by frequency- and temperature-dependent
properties. Under the assumption of harmonic excitation and constant temperature, the one-dimensional
relationship between stress σ∗(ω) and strain ε∗(ω) is expressed as:

σ∗(ω) = G∗(ω)ε∗(ω) (1)

where ω is the angular frequency, q∗(ω) represents the Fourier transform of a variable q(t), and G∗(ω) is the
complex shear modulus, which can be written as:

G∗(ω) = G′(ω) + jG′′(ω) = G′(ω)(1 + jηv(ω)) (2)

where G′(ω) is the storage shear modulus, G′′(ω) is the loss shear modulus and ηv(ω) =
G′′(ω)
G′(ω)

is the

material loss factor.
The extension of the one-dimensional constitutive equation to a fully three-dimensional behaviour law is
easily performed by assuming isotropy and constant Poisson ratio:

σ∗(ω) = C∗(ω)ε∗(ω) (3)

where σ∗(ω) and ˜ε∗(ω) are the Fourier transform of the stress and strain tensor, in Voigt notation, and
C∗(ω) is a complex, frequency-dependent elasticity matrix:

C∗(ω) =
G∗(ω)
0.5− ν




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 0.5− ν 0 0
0 0 0 0 0.5− ν 0
0 0 0 0 0 0.5− ν




(4)

Considering this representation, the stiffness matrix of the viscoelastic layer is complex and frequency-
dependent:

K∗
v(ω) = G∗(ω)K0

v (5)

where K0
v is a constant stiffness matrix evaluated with unit shear modulus. Therefore, the discretized problem

associated to the dynamics of a structure with constrained layer damping in the frequency domain is:
(
Ke +G∗(ω)K0

v − ω2M
)
U∗(ω) = F (6)

The advantage of decomposing the stiffness matrix into an elastic and a viscoelastic part is that the complex
frequency-dependent shear modulus is in factor of a constant matrix.

3 Prediction of modal loss factors

The efficiency of a damping treatment is commonly evaluated through modal loss factors. For structures
with constant damping, modal loss factors can be identified by solving the associated complex eigenvalue
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problem. However, in case of viscoelastic damping, the frequency dependency of the stiffness matrix leads
to a non-linear eigenvalue problem:

(
Ke +G∗(ωk)K0

v − λ∗
k(ωk)

2M
)
Φ∗

k = 0 (7)

where the eigenfrequencies λ∗2
k = ω2

k(1 + jηk) and the normal modes Φ∗
k are complex. The resolution of

such a non-linear eigenvalue problem requires the use of non conventional methods, such as the asymptotic
numerical method [2], which are generally associated with a great computational cost. In practice, modal
loss factors are estimated through approximate methods such as the Modal Strain Energy (MSE) method
or the Iterative Complex Eigensolution (ICE) method [3], or indirectly computed from frequency response
functions [4]. The key features of those methods are presented in this section and compared in the next
section. In the following, the damping of the elastic faces is neglected in comparison with the loss factor of
the core layer.

3.1 Modal Strain Energy (MSE) method

The modal strain energy (MSE) method has been introduced by Johnson et al. [9] to estimate the damping
ratio associated to the r-th mode of the structure, ηMSE

r , from the real eigenvector of the undamped structure:

ηMSE
r =

ηv(ω
0
r )

2

Φ0T
r G′(ω0

r )K0
vΦ

0
r

Φ0T
r (Ke +G′(ω0

r )K0
v)Φ

0
r

(8)

where (ω0
k,Φ

0
k) are solutions of:

(
Ke +G0K0

v −
(
ω0
r

)2M
)
Φ0

r = 0 (9)

with G0 = G∗(ω = 0).
Equation (8) supposes that the eigenfrequencies and the eigenvectors are not modified by the frequency
dependency of the viscoelastic properties or the material loss factor.

3.2 Iterative Complex Eigensolution (ICE) method

The iterative complex eigensolution method was developped to extend the modal strain energy method,
by iteratively seeking a better approximation of the non-linear eigenvalue problem. The complex eigen-
frequencies λ∗

k and eigenvectors Φ∗
k, solutions of Equation (7) are estimated from the converged values

eigenfrequencies of the following eigenproblem:
(
Ke +G∗(ωp)K0

v − λ∗2
k (ωp)M

)
Φ∗

k(ωp) = 0 (10)

For each mode k, convergence is achieved when:

ωp −ℜ(λ∗
k(ωp))

ℜ(λ∗
k(ωp))

< εtol (11)

The r-th damping ratio of the damped structure, ηICE
r can be estimated from the converged solutions of the

iterative algorithm:

ηICE
r =

ℑ(λ∗
r)

ℜ(λ∗
r)

(12)

While this method provides a good approximation of the modal loss factors, it also requires a large compu-
tational effort as a complex eigenvalue problem need to be solved at each iterative before convergence.
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Figure 1: Geometry and mesh of the structure with CLD treatment.

Table 1: Material parameters

Material Shear modulus Poisson ratio Density
Aluminum G = 26.7 GPa ν = 0.33 ρ = 2700 kg/m3

Viscoelastic G∗(ω) =
G0 +G∞(jωτ)α

1 + (jωτ)α
ν = 0.4985 ρ = 1460 kg/m3

G0 = 1.4 MPa
(Deltane 350) G∞ = 0.54 GPa

τ = 0.52 µs
α = 059

3.3 Rational Fraction Polymial (RFP) method

Input-output dynamic identification approaches consist in identifying modal parameters from single or mul-
tiple input-output frequency response functions. In this work, we focus on single input-output receptance
functions, in which the dynamic displacement from Equation (6) is computed using a multi-modal reduction
method [10]. This approach allows a quick evaluation of the receptance function and is adapted to structures
with viscoelastic damping.
To estimate the modal parameters of the structure from the computed receptance functions, a rational frac-
tion polynomial (RFP) method is used [4]. The modal loss factors estimated from this approach are denoted
ηRFP
r and will be considered as reference in the following section.

4 Material optimisation

4.1 Description of the simulation setup

The structure under study us a free rectangular aluminum beam equipped with a constrained layer damping
(CLD) treatment, subjected to a harmonic load at one end [11]. The CLD treatment consists of a viscoelastic
core layer made of Deltane350 and an aluminum constraining layer. The geometry and the mesh of the
structure are represented in Figure 1. The frequency dependency of the viscoelastic properties of Deltane350
is described by a fractional derivative model, whose parameters are given in Table 1. The storage modulus
and the loss factor of the damping material are plotted as a function of frequency in Figure 2.

4.2 Comparison of modal loss factors estimations

The receptance functions of the undamped (by considering G∗(ω) = G0) and the damped structure (with
Deltane350) are computed and compared in Figure 3. The CLD treatment with Deltane350 leads to a signif-
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Figure 2: Storage modulus and loss factor of the viscoelastic material (Deltane350) and the optimised vis-
coelastic material.
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Figure 3: Comparison of receptance functions for various viscoelastic behaviour: undamped (G∗(ω) = G0,
ηv = 0), damped with Deltance 350, damped with the optimal material.

icant reduction in the vibration levels. The eigenfrequencies and the modal loss factors of the damped struc-
ture are computed using the three methods described in the previous section, and reported in Table 2. One
can notice that the modal strain energy method greatly overestimates the modal loss factors, indicating that
the frequency dependence of the viscoelastic properties and the material loss factors modify significantly the
mode shapes of the structure. The modal loss factors computed with iterative complex eigensolution method
are very close to those identified with the rational fraction polynomial method from the receptance function
plotted in Figure 3. However, the latter method is computationnally more efficient to estimate the modal
parameters. Therefore, in the following, only the RFP method will be considered.

4.3 Optimization of the material properties

In this section, the properties of the viscoelastic layer are optimised to maximise the modal loss factors of
the four modes excited in the given frequency range. The proposed method is to find an optimal storage
shear modulus for each vibration mode. The material loss factor of the damping layer is taken as constant
as it is directly proportionnal to the modal loss factors [7]. Two values are considered for each mode r:
ηv = ηv(ωr), and ηv = 0.2 (arbitrary value). The receptance function is computed for a viscoelastic storage
shear modulus varying from 105 Hz to 109 Hz, and for each frequency response function, the modal loss
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Table 2: Modal parameters estimated by the Modal Strain Energy (MSE) method, the Iterative Complex
Eigensolution (ICE) method and the Rational Fraction Polynomial (RFP) method

Eigenfrequencies
Method MSE ICE RFP

Mode 1 54.8 Hz 55.2 Hz 55.2 Hz
Mode 2 149.2 Hz 151.6 Hz 151.6 Hz
Mode 3 284.7 Hz 296.5 Hz 296.2 Hz
Mode 4 463.9 Hz 487.6 Hz 488.0 Hz

Modal loss factors
Method MSE ICE RFP

Mode 1 1.42% 0.37% 0.41%

Mode 2 4.13% 0.63% 1.01%

Mode 3 5.57% 1.27% 1.48%

Mode 4 5.89% 1.95% 1.86%
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Figure 4: Optimisation of the storage modulus of the viscoelastic layer for the 4th mode of vibration.

factors are computed using the RFP method previously described. Results are presented only for the fourth
mode in Figure 4. Note that we retrieve the value of ηFRP

4 = 1.86% for G′ = G′(ω4) = 8.7 MPa and
ηv = ηv(ω4) = 1.0775. Figure 4 indicates that the storage modulus has a strong impact on the vibrations
amplitudes and that there is an optimal value of storage modulus which maximises the 4-th modal loss factor
of the structure (G′

opt = 1.65 MPa for ηv = ηv(ω4) = 1.0775, and G′
opt = 2.4 MPa for ηv = 2).

In a similar way, an optimal value of storage modulus is identified for the first three vibration modes. It
should be noted that the optimal value of storage modulus is increasing with the eigenfrequency of the mode,
which is coherent with the physical variations of the storage modulus expected for viscoelastic materials.
Another important observation is that for a given value of material loss factor, the maximal value of modal
loss factor is the same for all the vibration modes considered. An ideal viscoelastic material is then defined
from optimal values of storage shear modulus and an arbitrary material loss factor ηv = 0.776. The properties
of this optimal material are compared to Deltane350 in Figure 2. The receptance function of the structure
with this optimal material as core layer of the CLD treatment is plotted in Figure 3. The material optimisation
performed leads to a further reduction of the amplitude of vibrations on the whole frequency range, and the
modal loss factors of the four modes are all equal to η = 2.7%.

5 Conclusion

The goal of this work was to design an optimal constrained viscoelastic treatment from a material perspec-
tive. To do this, efficient computations of frequency response functions through a multi-modal approach
is combined with a modal parameter identification method (here a rational fraction polynomial method) to
identify an optimal value of storage modulus for each vibration mode. A numerical analysis carried out on
a aluminum beam with CLD treatment evidenced the existence of a maximum achievable modal loss factor,
common to all vibration modes, for a given material loss factor. The identification of an optimal viscoelastic
material would be of great help in the ealy-stage design of new elastomeric compound for vibration reduc-
tion.
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Moreover, the concept of maximum achievable modal loss factor is very similar to the notion of coupling fac-
tor, which drives the efficiency of piezoelectric shunts [12]. For piezoelectric shunts, the coupling coefficient
is computed explicitly from two real-valued eigenvalue problems associated with short circuit and open cir-
cuit conditions. The next step would be to find a similar way to efficiently identify the maximum achievable
modal loss factor for viscoelastic damping treatments. Some preliminary studies have been carried out in [8]
to propose an explicit optimality condition for structures with partial viscoelastic treatments, and need to be
further investigated. Linking the maximum achievable modal loss factor for viscoelastic damping treatment
to the coupling factor defined for piezoelectric shunts would also enable an objective comparison between
those two passive damping treatments [13].
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[12] O. Thomas, J. Ducarne, J.-F. Deü “Performance of piezoelectric shunts for vibration reduction,” Smart
Materials and Structures, vol. 21, no. 015008, 2011.

[13] B. Lossouarn, L. Rouleau, R. Darleux, J.-F. Deü “Comparison of passive damping treatments based
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