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Abstract
Modelling the uncertainties at the joint interface is crucial as it affects the dynamics of the whole system. But
modelling the interface using only a physics-based (mathematical) model may lead to large differences be-
tween predictions and observations as the physics of the actual system is only partially known. The research
focuses on the Bayesian stochastic model updating of joints in physical structures using Bayesian inference.
Substructures (joint structures) are modelled using physics-based models. In this work, different non-linear
models are used to generate dynamic responses. Using the dynamic responses, the backbone curve is gen-
erated which is used to establish the likelihood function for Bayesian identification of the joint parameters.
The backbone curves are the measurement data (with added noise) which is used by the Metropolis-Hastings
algorithm in Markov-Chain Monte Carlo (MCMC) sampling. The algorithm is applied for different non-
linear cases for parameter identification using Bayesian inference

1 Introduction

Joints in the structure transmit loads and moments between different substructures inducing nonlinearity in
the system, changing the overall damping and stiffness of the structure thus resulting in a change in the
dynamic response and inadequate damage characterisation. Quantifying the parameter accounting for the
uncertainties in the contact interface can be a bit tedious. These uncertainties can be due to various factors
such as geometric, material non-linearities at the interface resulting from friction, roughness, or different
geometric and material properties of the interacting parts [1]. Due to the uncertainties, non-linear depen-
dency of the dynamic response with stiffness and damping of the structure was observed [2]. This hinders
the modelling of the physics at the interface thus affecting the prediction of system response under regular
excitation. Modelling the uncertainties and dynamics at the joint interface using a mathematical model may
lead to large differences between predictions and observations. This can be due to various errors induced in
the model due to uncertainties in the governing equations, boundary conditions etc. [3]. These errors can be
minimized through model updating which uses experimental data of the structure to ascertain its unknown
parameters. Categorised as deterministic and stochastic, deterministic model updating finds the parameter
values of a specified system model such that it minimizes the difference between experiments and predictions
[4]. However, in order to account for the errors (due to incorrect modelling, missing information etc), and
uncertainties present in the model, stochastic model updating is adopted where the set of model parameters
is generated which converges on the set of experimental results [5]. The stochastic model updating approach
can be expressed in Bayesian or Frequentist way. The Bayesian approach makes use of the posterior distri-
bution to encapsulate the information of the unknown variables whereas the frequentist approach relies on
the sampling distribution taken from numerous data sets after repeated trials [6]. The current work focuses
on stochastic model updating using the Bayesian approach.
Mares et. al [7] used MCMC method for model updating on 3 degrees of freedom mass-spring system using
their experimental frequency response functions to update the spring stiffness parameters. The structural
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models were updated using ground acceleration data from the earthquake on reinforced concrete structure
utilising a simulation-based Bayesian methodology for system identification and using these updated models,
reliability of the structural system was estimated [8]. Sun et.al [9] used hieratical Bayesian inference with
MCMC algorithm to draw samples of stiffness parameters for a 9 storey shear-type building with incomplete
modal data.
In this paper, Bayesian inference with Metropolis Hastings algorithm is used to draw samples of parameters
for different non-linear cases. The novelty of the work lies in the likelihood function considered here. Back-
bone curves extracted from the dynamic response of the system are used for defining the likelihood function.
The work is organized as follows. Section 2 briefly explains the concept of the backbone curve and how it
is generated for the system with different non-linearities. Section 3 describes the parameter identification
using Bayesian inference with a light on prior, likelihood and finally posterior distribution for the problem
at hand. In Section 4, the theory behind the MCMC sampling is illustrated. Section 5 consists of analysis of
the results of the sampling for different non-linear cases. The paper is concluded in Section 6.

2 Mathematical modelling for data generation

2.1 Backbone curve

Response of the non-linear system under forced excitation is significant but can be complicated to interpret.
Backbone curves can help in understanding the non-linearity in the system without any forced excitation.
It employs the solution of a non-linear system where the natural frequency is described as a function of
the amplitude of the system’s response with an assumption that forcing and damping are not present [10].
Furthermore, the estimated instantaneous frequency is assumed not to be rapidly altered by dissipative forces
acting on the system. For the linear system, the backbone curve is a straight line whereas for the non-linear
system it deviates from the vertical line (Fig. 1). Backbone establishes a base for identifying the non-linearity
in the system For generating a backbone curve (for SDOF or MDOF), the response of a system (Eq. 1) is
considered where F(x,ẋ) represents different non-linearities in the system.

mẍ + C ẋ +Kx + F (x , ẋ ) = 0 (1)

Figure 1: Backbone curve for linear and non-linear system

2.2 Resonant decay method

A free decay response with a single mode of vibration is a resonant decay response. The structure is excited
at a relevant frequency using harmonic excitation and when the structure reaches the desired resonance
condition, the input force is removed and the model undergoes a decayed response at a single mode of
vibration [11]. The instantaneous frequency and amplitude envelope of this decayed response gives the

DYNAMICS OF JOINTS 1248



backbone curve of the system. Resonant decay response can be measured for SDOF and multi-degree of
freedom (MDOF) systems. For an SDOF system, every free decay is resonant decay. However, for an
MDOF system, harmonic excitation is given at a single frequency of the mode interested.

2.3 Extracting backbone curve using resonant decay method

For each case of non-linearity, a range (upper and lower bound) is defined for each parameter. From this de-
fined range, different values for the parameters are generated using Latin Hypercube Sampling (LHS). Using
these parameter values, system response is generated which is further used for the extraction of backbone
curves. Instantaneous amplitude and frequency are obtained using the decay response for backbone curve
estimation. Instantaneous frequency (fi ) and instantaneous amplitude (Ai ) are calculated using maximum
and minimum peak points of the response signal.

fi = (ti+1 − ti)
−1 (2)

Ai =
1

2
(Max(Amplitude(i))−Min(Amplitude(i))) (3)

where ti and ti+1 are the instantaneous time corresponding to the maximum peak points (see figure 2). For
a non-linear system, (represented in Eq. 1) where F represents the non-linear damping and restoring forces,
the resonant decay method is used for approximating the backbone curve proposed in [12]. This decaying
response is used to evaluate instantaneous frequency and amplitude to estimate the backbone curve. For
a single degree of freedom (SDOF) system, to excite the system to resonance, the initial condition (either
displacement or velocity) large enough to excite the non-linearity is considered.
Figure 2 shows the free decaying response of one of the cases considered (Case 1: Cubic stiffness). This
decaying response is simulated experimental data from where the backbone curve is drawn using the instan-
taneous frequencies and amplitude from the response. This approach is used for five different non-linear
cases which will be introduced later in the paper.

Figure 2: Response decay method with maximum and minimum peak points

In this work, SDOF with three different non-linear systems (Eq. 4, 6) is considered where an initial condi-
tion of displacement is taken to excite the non-linearity. For each non-linear case, around 100 samples of
parameters are generated using LHS sampling and each set of parameters was used to generate backbone
curves. The equations governing the non-linear systems which are shown below are used for generating the
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decaying response for each non-linear system
Case 1: Cubic stiffness model

mẍ + C ẋ +K1 x +K2 x
3 = 0 (4)

Case 2: Quadratic damping with cubic stiffness model

mẍ + C1 ẋ + C2 ẋ |ẋ |+K1 x +K2 x
3 = 0 (5)

Case 2: Dry friction model

mẍ + C1 ẋ + C2 sign ẋ +Kx = 0 (6)

Figure3 shows extracted backbone for different non-linear systems. These estimated backbone curves rep-
resent the possible measurements of the system. Here, the inverse problem where the parameters of interest
are calculated based on the observations is performed using Bayesian inference.

(a) Cubic stiffness (b) Quadratic damping with cubic stiffness (c) Dry friction

Figure 3: Backbone curve of the cases using response decay method

3 Bayesian inference for parameter identification

The parameters to be identified are represented as random variables with a Probability distribution function.
Based on previous information about the distribution and observations, Bayesian Inference creates a joint
Probability distribution function for the parameters. The well-known Bayes Rule underpins the Bayesian
Inference framework as:

P (θ | D,M) =
P (D | θ,M) · P (θ | M)

P (D | M)
(7)

P (D | θ,M) and P (θ | M) are the likelihood function and prior distribution respectively. The likelihood
function represents the degree of agreement between the measurement and the system model. Prior distribu-
tion reflects a priori knowledge or initial assumption about the model parameters before any measurements
are made. The product of likelihood and prior can be defined as the posterior distribution P (θ | D,M).
P (D | M) is the normalisation constant of the posterior distribution. D is the measurements made from M
models (system) to estimate parameter vector θ.
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In this paper, θ are the vector of system parameters such that θ ∈ Rmx1 where m is the number of pa-
rameters. (D | M) corresponds to the set of measurements i.e. the backbone curves for the given model
(M). Uniform distribution is assumed for each parameter with their corresponding lower and upper bounds
and P (θ | M) which is prior knowledge of parameters is the joint probability density function (pdf) of the
parameters.

Figure 4: Likelihood function from backbone curves

For this problem, the likelihood function is defined from the points represented in Figure. 4. The red dots in
the figure correspond to the points in the backbone curve at a certain amplitude. A set of such points at an
amplitude gives the distribution for the likelihood function. To capture the non-linearity better, the pdfs are
considered around a higher amplitude region, From the generated pdfs, it was observed that the distribution
was close to the uniform distribution for all three cases. Hence the likelihood function follows the uniform
distribution.

Posterior distribution combines our prior knowledge of the parameters and the updated knowledge from the
measurements. To accommodate the loglikelihood, posterior is defined in log space and is expressed as
log(P (θ | D,M)) such that log(P (θ | D,M)) = log(P (D | θ,M)) + log(P (D | M)).

4 Theory of MCMC sampling

Markov Chain Monte Carlo (MCMC) sampling is used to generate samples from the target distribution with-
out much information on the distribution’s mathematical aspects, such as the normalisation constant P (D)
[13]. These samples can be used to estimate the mean of the posterior distribution where posterior distribu-
tion is the product of prior and likelihood. MCMC sampling utilizes properties of Monte Carlo and Markov
Chains at the same time using the Metropolis-Hastings algorithm to decide on the acceptance of the samples.
Monte Carlo defines the method of generating random numbers from the proposal distribution whereas
Markov Chains are a sequence of numbers where each number is dependent on the number previous to
it in the sequence. The metropolis-Hastings algorithm helps in deciding which proposed values of the pa-
rameter should be accepted or rejected. Samples are selected from the proposed distribution (Monte Carlo)
with a mean equal to the previous parameter value for MCMC sampling (Markov Chains). When samples
are created using MCMC, the trace plot appears to wander and is frequently referred to as a Random walk.
The density plot that results in does not mirror the proposal density. The ratio between the posterior proba-
bility of the sample and the sample drawn before is calculated once a sample is generated from the proposal
distribution (h).

h (θn+1, θn) =
Posterior probability of θn+1

Posterior probability of θn
(8)
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If the posterior probability of the sample drawn is greater than the posterior probability of the previous
sample (h > 1), then the new sample is accepted. However, if h < 1, the new sample is not yet discarded
instead it is treated as in acceptance probability (α) defined in the equation below.

Acceptance probability = α (θn+1 , θn)

= min [h (θn+1, θn) , 1]
(9)

A random number (r) from a uniform distribution is drawn and is compared with the Acceptance probability
(α). If α is greater than r, then the new sample is accepted else rejected and the previous sample is considered
a new sample. The samples generated using MCMC are samples from the posterior distribution.To start the
MCMC sampling, candidate samples are drawn from the proposal distribution. For the current analysis, the
normal distribution is chosen as the proposal distribution. To avoid dependence of MH algorithm samples on
the beginning values the first few samples are eliminated. This is known as the burn-in phase. This burn-in
period varies based on the trace and is the time it takes for the chain to stabilise and avoid drifting. Further-
more, because the parameter samples are created using Markov chains, they can be highly autocorrelated
even after accurately describing the model. So, to lessen the autocorrelation, thinning can be implemented
which entails increasing the number of samples and obtaining samples at regular intervals. However, thin-
ning is not implemented for this analysis. There are some literature which does not support using thinning for
reducing autocorrelation as throwing away data is not a precise way of increasing the efficiency of Markov
chains [14][15].

4.1 Performance diagnostics for MCMC samples

Out of several ways to diagnose the performance of MCMC samples, few of them (such as acceptance rate,
trace plot, and KL divergence) have been explored in this paper to check the performance of MCMC.
The acceptance rate represents the percentage of times the MCMC sampling generates parameter samples
that is different from the prior sample. An acceptance rate of 0.25 means, that while creating a sequence
of parameter values, the algorithm creates new parameter values 25% of the time while staying on the old
parameter values 75% of the time.
The Trace plot is drawn to observe the sample values acquired as a check for sample convergence about the
mean value. A trace plot is made to observe the convergence of the simulated Markov chain to its stationary
distribution. It gives the history of the parameter value across iterations of the chain.
There are two distinct probability distributions, such as the true distribution and an approximate version of
it, for each parameter. True distribution is the one from which measurement data (i.e backbone cure) was
taken whereas approximate distribution is derived from the MCMC samples of each parameter. The degree
to which one probability distribution deviates from another is measured by the Kullback-Leibler Divergence
score, or KL divergence score (KLD Score). If the score is 0, it implies that both distributions are equally
likely; if not, it is positive.

5 Analyzing the samples from MCMC Sampling

The prior, likelihood and the posterior described in Section 3 is considered for MCMC sampling. The
system with cubic stiffness ( i.e. Case 1) is shown for preliminary analysis of the MCMC samples. A similar
analysis is performed for each case but only Case 1 is shown in this work. True distribution defines how
the parameters in the measurement data are distributed. Here, the joint probability density function (pdf) of
the parameters is taken where each parameter is uniformly distributed with lower and upper bounds defined
in Table 1. Figure 5 and 6 show the distribution of the 5000 samples (of each parameter) drawn from the
posterior and their corresponding trace plot respectively.
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Table 1: Range of parameters of measurement data defining true distribution for Case 1.

Parameters Maximum Minimum
K1 (N/m) 6000 7000
K2 (N/m3) 6000000 6500000
C (Ns/m) 0.2 2

Figure 5: Scatter plot Matrix of 5000 samples of K1 (red), K2(green) and C (blue) for Case 1.

From the distribution of K1 and C (Figure 5 ) it can be discerned that the range is more or less near to the
true distribution although the same cannot be said for K2. The trace plot for C shows that with the given
proposal distribution, the algorithm performs effectively and despite the correlation in samples, the Markov
chain mixes nicely and the samples approach stationary distribution faster. Also, a high correlation in the
samples of K1 and K2 can be seen through the trace plot (Figure 6). The proposal distribution for K1 and
K2 does not play well with the algorithm. The jump in the proposal (i.e. step size) is quite small for K1

and K2 (relatively small for K2), resulting in the slow movement of the state through state space, therefore
traversing the posterior distribution takes a long time. A high level of correlation was observed between
the samples over periods of time i.e.autocorrelation. Autocorrelation measures the linear dependency of the
current value of the chain to its past values and varies between -1 to 1. For the same number of samples,
information derived from dependent samples about the stationary distribution is far less than the information
derived from independent samples. From Figure. 7, where the first 100 samples are considered and it can be
seen that autocorrelation for C for first 100 and last 100 samples is comparatively less than corresponding
values for K1, K2. Also, no reduction in autocorrelation values was observed during the end of the iteration.
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Figure 6: Trace plot for K1, K2 and C with 5000 MCMC samples for Case 1.

Figure 7: Autocorelation plot for K1 and K2 for first 100 and last 100 samples for Case 1.

Various approaches were considered for achieving stationary distribution and reducing the correlation among
the samples.

• Burn-in period was increased to allow the chain to reach typical state and avoid the effect of initial
value on sampling.

• Sample size i.e number of MCMC samples to be generated was increased (to 20000).

• Jump size in proposal distribution was varied by controlling the standard deviation of the proposal
distribution

• Scaling was performed as the parameters were orders of magnitude different (varying from order 1e+3
to 1e+1) and the samplers perform best when all parameters are roughly on the same scale. Here, the
scaling is implemented such that values remain in the range of +1 to -1.

Figure 8 shows the distribution of parameters for Case 1 before and after applying all the changes mentioned
above. After scaling of parameters, the samples converged to mean values faster however, an increase in the
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flat areas in the trace plot was seen resulting in a large number of rejected samples. From Figure 8, it can be
seen that the distribution for K2 and C are more identical to their true distribution.

(a) 5000 MCMC samples (b) 20000 MCMC samples

Figure 8: Distribution of MCMC samples of parameters before (a) and after (b) implementing changes.

5.1 Results from MCMC sampling

5.1.1 Case 1: Cubic non-linearity

Parameters considered are K1, K2 and C. The distribution for K1, K2 and C (Figure. 9) are near to its
true distribution which can be further ensured from KL divergence score in table 3 . Also, the range defined
in true distribution for K1, K2 and C are covered in approximate distribution. The acceptance rate for the
samples generated was found to be 0.33 which is an acceptable range for 1-d problem with three parameters.
The distribution of C from MCMC samples (i.e approximate distribution) has a relatively larger divergence
from its corresponding true distribution as indicated by a value of 0.81 as KL divergence score. However, the
distribution is uniform with a range similar to the one defined for true distribution. Table 2 gives the range
of the parameters considered for prior along with the range defined in measurement data (true distribution).
Table 3 gives the mean and standard deviation of the distribution of the parameters (20000 MCMC samples).

Table 2: Range of parameters for true and prior distribution for Case 1.

Parameters True Prior
Minimum Maximum Minimum Maximum

K1 (N/m) 6000 7000 5400 7700
K2 (N/m3) 6000000 6500000 5400000 7150000
C (Ns/m) 0.2 2 0.1 5
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Figure 9: Scatter plot matrix of 20000 MCMC samples of K1 (Red), K2 (Green) and C (Navy blue) for Case
1.

Figure 10: Trace plot for K1, K2 and C with 20000 MCMC samples

Table 3: Mean, standard deviation and KLD score of the distribution of parameters with 20000 samples for
Case 1.

Parameters Mean Standard Deviation KLD Score
K1 (N/m) 6495.83 278.53 0.00
K2(N/m3) 6248829.85 138711.94 0.00
C (Ns/m) 1.09 0.52 0.81

5.1.2 Case 2: Quadratic damping with cubic stiffness

The distribution of the four parameters (K1- Red, K2- Green, C1- Blue and C2- Steel blue) of the system
defined in Case 2 can be seen in Figure 11. K1, K2, C1 and C2 appear to have uniform distribution which
matches the true distribution. From the trace plot (Figure 12), samples drawn from the posterior distribution
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are almost perfect, the chain trace is approximately i.i.d (independent, identical distribution), and the accep-
tance rate is 0.23. The mean and standard deviation of the distribution of the parameters (20000 MCMC
samples) are given in the table below (Table. 5).

Table 4: Range of parameters for true and prior distribution for Case 2.

Parameters True Prior
Minimum Maximum Minimum Maximum

K1 (N/m) 6000 7000 5400 7700
K2 (N/m3) 6000000 6500000 5400000 7150000
C1 (Ns/m) 0.2 2 0.1 10
C2 (Ns/m) 2 10 1 20

Figure 11: Scatter plot Matrix of 20000 MCMC samples of K1 (Red), K2 (Green), C1 (Blue) and C2 (Steel
blue) for Case 2.

Figure 12: Trace plot for K1, K2, C1 and C2 with 20000 MCMC samples

DYNAMICS OF JOINTS 1257



Table 5: Mean, Standard deviation and KLD score of the distribution of parameters with 40000 samples for
Case 2.

Parameters Mean Standard Deviation KLD Score
K1 (N/m) 6507.51 279.38 0.00
K2 (N/m3) 6253617.35 144994.10 0.00
C1 (Ns/m) 1.08 0.52 0.81
C2 (Ns/m) 5.97 2.26 0.00

5.1.3 Case 3: Dry friction

For Case 3, the range of parameters for true and prior distribution is defined in Table 6. Samples converge
faster and uniform distribution of the parameters can be seen in Figure 13. From the scatterplot (Figure. 13),
K, C1 and C2 samples appear to be uniformly distributed with a range similar to the one defined for true
distribution. Low values KL divergence score for K, C1 and C2 show how near the approximated distribution
is to the true distribution. The acceptance level of the MCMC sampler for Case 3 is 0.34. Table 7 gives the
values of the mean, standard deviation and KL divergence score of the parameters.

Table 6: Range of parameters for true and prior distribution for Case 3.

Parameters True Prior
Minimum Maximum Minimum Maximum

K (N/m) 6000 7000 5400 7700
C1 (Ns/m) 0.1 0.9 0.1 5
C2 (Ns/m) 0.2 2 0.1 10

Figure 13: Scatter plot matrix of 20000 MCMC samples of K (Red), C1 (Green)and C2 (Blue) for Case 3.
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Figure 14: Trace plot for K, C1 and C2 with 20000 MCMC samples for Case 3.

Table 7: Mean, standard deviation and KLD score of the distribution of parameters with 20000 samples for
Case 3.

Parameters Mean Standard Deviation KLD Score
K (N/m) 6505.45 280.80 0.00
C1 (Ns/m) 0.49 0.23 0.00
C2 (Ns/m) 1.10 0.51 0.81

6 Conclusion

In this paper, stochastic nonlinear model updating is introduced based on using a measured backbone curve
from identical structures that are assumed to be built in the same way but have variabilities due to manufac-
turing tolerances. The measured backbone curves are simulated using the proposed nonlinear models with
stochastic parameters with known (true) initial parameters. The Likelihood function is defined by multiply-
ing the fitted pdfs at different amplitudes of the backbone curve. Finally, the proposed method is applied to
the three examples, i.e. cubic stiffness, quadratic damping with cubic stiffness and dry friction (Case1, 2 and
3) and the results showed the potential of the proposed method in identifying the distribution of updating
parameters with a good degree of accuracy. Future work includes extending the analysis to other joint mod-
els comparing different methods of extracting backbone curves and their effect on parameter identification.
Also, applying the proposed method using real experimental data of jointed structures.
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