
Numerical and experimental insights into acoustic
emission from a train wheelset

L. Taenzer, D. Tallarico, A. Kandiah, B. Van Damme, A. Bergamini
Empa - Swiss Federal Laboratories for Material Science and Technology,
Laboratory for Acoustics/ Noise Control ,
Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
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Abstract
Structural vibrations of railway components such as wheels and rails are the main cause of noise emission. In
this work, we investigate both numerically and experimentally, the structural vibrations and sound emission
from a train wheelset under lab-conditions. The main focus is on the investigation of sound propagation in the
fluid domain considering three alternative acoustic sources structural boundary values are projected upon: the
analytical model of a discretized circular disk mounted to an infinite rigid baffle using the discrete calculation
method (DCM), a closed cylinder volume using the boundary element method (BEM) and a cylinder in
a cubic enclosure using the finite element method (FEM). We put a special emphasis on calculating the
impedance matrix that connects sound pressures and normal velocities obtained from the structural analysis
at the vibrating wheel. In view of future acoustics, reflections from a sound-hard surface are taken into
account using the half-space Green’s function.

1 Introduction

The noise emission of railway traffic is still a major research topic. Railway noise is caused by fluid-dynamic
effects, structure borne sound and electric machines such as transformers and cooling systems. Rolling noise
contributes considerably to the overall sound emissions and is dominant for train speeds between 30 and
250 km/h [1]. The wheel-rail interaction is often considered by its subcomponents in order to examine
their share more closely [2]. There are several ways to reduce noise which can be, for example limited
operational speed, protection barriers [3], or optimization of components which strongly emit noise such as
the wheel [4]. To deal with public requirements and regulations and collecting data cheaply and fast, there
is an increasing need for detailed physics-based models of noise emission for each separate subcomponent.
Furthermore, they provide the possibility to investigate different effects such as wheel flats [5], contact areas
and polygonization [6].
Sound emission from train wheel sets has been modelled via a plethora of analytical (simplified models [7])
and numerical (finite element and BEM [8], [5]) techniques. With the boundary element method, complex
geometries can be investigated, but also precise meshes for a closed surfaces are needed. One simple model
which is customary in building acoustics but has not been investigated in railway wheel emission is the model
of a piston mounted on a baffle, which is generally only used for uniform velocities. However, several authors
developed expressions for a discretized vibrating piston with non-uniform velocity using analytical solutions
[9] or asymptotic expressions for calculating the mutual impedance between the rectangular [10] or circular
[11] discretized elements of the oscillating plate. A precise formulation of the impedance of a discretized
plate is published in [12] also referred to as the Discrete Calculation Method (DCM). To the best of our
knowledge, there is no work available, comparing DCM for the acoustic impedance connecting acoustic
pressure and structural velocity. Most works considering DCM method investigate the overall radiation
efficiency in the far field such as e.g. [13]. The goal of this work is to show that the DCM and in particular
the predicted impedance matrix can be used to reduce the computational effort and simplify the entire model
significantly by
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Figure 1: 3D model of railway wheelset.

• considering sound waves in the far-field and

• provided that radiation from the edges is negligible.

For the acoustic source, surface velocity input data of the vibrating structure is generally taken from harmonic
finite element analysis. It is a common tool for characterizing railway wheels [14] that can be used for noise
reduction shape optimization [15].
In this work, we study both numerically and experimentally the structural vibrations and sound emission
from a train wheelset with free boundary conditions. The modeling of sound propagation in the fluid domain
follows a boundary element method approach. We put a special emphasis on calculating the impedance
matrix that relates sound pressure and normal velocities at the vibrating wheelset. The impedance matrix can
be obtained using different approaches, such as the combined Helmholtz integral equation formulation in the
boundary element method and the discrete calculation method (DCM). The two methods take into account
near-field and far-field assumptions, respectively. As a third numerical model for acoustic noise emission,
we use a more standard FE method in the acoustic domain. We highlight the computational benefit of the
BEM methods compared to the FE method for problems involving free-field emission of sound.

2 Theory

2.1 Harmonic analysis

In the finite element harmonic analysis, the railway wheel is excited by a unit force F parallel to the axle and
at a specific node and the mode shapes u are obtained by solving the equation of motion

(−ω2M + jωC + K
)
u = F, (1)

where F is now a nodal vector. The quantities are defined in appendix A. The normal velocities on the front
surface (green area in Fig. 1) are extracted with vn = 2πfun. The wheel is excited at one specific node over
all frequencies and the displacements u are calculated using the finite element method in Ansys.

2.2 Acoustic analysis

The data from the harmonic analysis is used to develop a model for the noise radiation. The output normal
velocities vn are used as input data and projected onto a flat surface. In the first step, the equation

ps = Zvn (2)
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is needed to calculate the impedance matrix Z of the surface in order to obtain the surface pressure ps from
the input normal velocity vn. In the following, three methods are used in order to calculate the acoustic
impedance whose governing equations are summarized in Tab. 1.

Table 1: Expressions of the acoustic impedance matrix Z and associated literature.

Impedance Z Author

Baffled piston with DCM
zii = ρc

[
1− J1(2ka)

ka + S1(2ka)
ka

]

zij = jρckaAi
e−jkab

2πb

[
2J1(ka)

ka
2J1(kad)

kad

] [12]

Boundary element method Z = [C −A]−1B [16]

Fluid structure interaction Z = −[−ω2MF + jωCF +KF ]
−1(jωρ0Rf ) [17]

(a) Circular piston mounted
on an infinite rigid baffle.

(b) Closed surface for
boundary element method. (c) Finite element model with enclosure for fluid domain.

Figure 2: Models for noise propagation

The three different emission models are illustrated in Fig. 2. Illustration 2a shows a circular piston mounted
on an infinite rigid baffle, 2b, a cylinder with a closed surface used in the boundary element method and 2c,
two cylinders surrounding the wheels of the original wheelset in a cubic enclosure, which approximates the
fluid domain using the finite element method. To calculate the pressure over the wheel’s surface from its
normal vibration velocity, all three methods perform the computations of the impedance relation. Following
that, the noise propagation is calculated, using the Green’s function for models 2a and 2b, whereas for the
finite element method the pressure distribution is solved for all degrees of freedom in the discretized volume.
The baffle is the computationally least expensive method since one needs to simply calculate the pressure
values on the disk and a set of selected receiver points. The cylinder is computationally more expensive since
one needs to calculate the pressures on two circular areas and the lateral area. The finite element model is
the computationally most expensive method since the entire volume around the cylinders is discretized and
contributing to the solution in the selected receiver points.

2.2.1 Discretization of a baffled piston

At first, we look at a circular disk mounted on an infinite rigid baffle, see Fig. 2a. In this setup with constant
surface velocity, an analytical far field solution exists [18] which can be written as
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p(r, θ, ka) = jkaρc

{
2J1(ka sin(θ))

(ka sin(θ))

}
e−jkar

2r
v. (3)

Since the velocities over the wheel are not homogenous, the system is discretized in many little disks which
behave again like baffled pistons. The impedance is split up in the self radiation impedance

zii = ρc

[
1− J1(2ka)

ka
+

S1(2ka)

ka

]
(4)

and the mutual radiation impedance

zij = jρckasi
e−jkab

2πb

[
2J1(ka)

ka

2J1(kad)

kad

]
(5)

as reported in [12]. It is called the Discrete Calculation Method (DCM), which is limited to the far field and
neglecting edge effects causing scattering.

2.2.2 Boundary element method

The analytically more complex method is the boundary element method which takes radiation effects of
edges and therefore the more realistic boundary conditions into account, see Fig. 2b. In [16], the authors use
the combined Helmholtz integral equation formulation (CHIEF) so that more complex geometries with com-
plex meshes can be treated and the uniqueness problem is solved by introducing additional points, leading to
an over-determined system that is solvable. Generally, the impedance on the surface is solved by discretizing
the Kirchhoff-Helmholtz integral leading to the discretized equation

Cps = Aps −Bvs, (6)

where Aij = G(ri, rj)si and Bij = jωρ
∂G(ri,rj)

∂n si where G is the Green’s function and i and j are the
elements on the vibrating surface. ri and rj are the spatial coordinates of the disk’s center position and si is
the surface area which is the same for all elements. C(x) is interior 1 and exterior 0. On the surface itself it
is the geometric quantity of the surface angle, which is generally 0.5 for continuous surfaces.

From Eq. 6, the impedance matrix becomes

Z = −(C −A)−1B. (7)

As described in [19] the expression for the Green’s function is

G(x, y) =
ejkR

4πR
+RI

ejkR
′

4πR′ . (8)

where RI = 0 for an infinite space and RI = 1 for a semi-infinite hard-boundary space.
R =

√
(x− xs)2 + (y − ys)2 + (z − zs)2 and R′ =

√
(x− xs)2 + (y − ys)2 + (z + zs)2 are the dis-

tances between receiver and the source and receiver and the image source respectively with the receiver
position r = (x, y, z) and source at position rs = (xs, ys, zs), only valid if the reflecting plane is the xy
plane. The half space assumption is equivalent to a mirrored, virtual second source leading to the hard
boundary condition of

v(rrp)nrp = 0, (9)

which considers normal velocities equal to zero at the reflecting plane with coordinates rrp and normal vector
nrp.
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2.2.3 Finite element method

For one-way coupling of a fluid-structure interaction problem in the frequency domain the impedance matrix
is calculated with the matrices obtained from the discretisation in the finite element domain. It is described
as

Z = −[−ω2MF + jωCF +KF ]
−1(jωρ0Rf ) (10)

with Mf , Cf , and Kf being the mass, damping and stiffness matrix of the fluid, and the coupling matrix Rf

importing the displacements of selected nodes from the harmonic analysis [17].

3 Results

3.1 Structural vibrational analysis

Figure 3: Mobility of the velocity per unit force in axial direction with visualized mode shapes at frequency
peaks.

To validate the results from the time harmonic FEA, the numerical predictions are compared to the laservi-
brometer measurements. The wheel DB97 is excited in axial direction with a shaker as a mechanical excita-
tion source and a laser vibrometer is used to measure the velocities in axial direction. The wheel has a radius
of 0.45 meter and a weight of around 1000 kg. In Fig. 3 , the comparison between the harmonic FEM model
and the measurements in axial direction are shown. The model is investigated under free conditions, imple-
mented by laying the wheelset axle on a wooden support equipped with rubber pads. Both the frequencies
and their absolute values agree very well between experiment and simulation. The mode shapes are shown
at several frequency peaks.

3.2 Acoustic emission

The described models in 2.2 are realized with different software tools. The DCM model is programmed in
Matlab. The BEM model is realized by using the OpenBEM code developed by [16] and the finite element
model is built in Ansys [17].

3.2.1 Pressure on input surface obtained by impedance

The three models are compared by evaluating the pressures on a line at the surface of the wheel as shown
in Fig. 4a. The green area represents the surface where the fluid-structure interaction occurs (contributions
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(a) Schematic view of evaluated surface.
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Figure 4: Evaluation of pressure modes on input surface.

from the axle and other surfaces are assumed negligible to the frontal emission of the single wheel). The
impedance matrix Z is evaluated to obtain the surface pressure ps from the normal velocities vn. Since a
comparison of the impedance matrix between the different methods is not possible due to different meshes
(triangular elements for Open BEM, tetrahedrons for FSI and quadrilateral for the DCM method), the pres-
sure distribution along the marked line is shown for selected modes, see Fig. 4b. The pressures between the
baffled piston and the boundary element are in very good agreement, while the finite element model gives
more divergent results, which is well known in research as the enclosure in a finite volume faces several
difficulties such as boundary conditions at infinity (in our case we use absorption boundaries in Ansys) and
mesh size of the elements, which limits the range of valid frequencies, in our case from 200-2000 Hz.

3.2.2 Pressure on receiver surface

(a) Schematic view of evaluated surface.
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Figure 5: Pressures compared at surface 0.88 meters away from wheel.
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In order to evaluate the pressures away from the surface, the distance of 0.88 meters is selected. This is
mainly dictated by computational feasibility of the FE model: the enclosure must be large enough to absorb
outgoing waves properly and small enough so that computational feasibility is still guaranteed. This means
that for the valid frequency range, the distance of the absorption boundary must be at least half the wavelength
away from the source and the elements of the air must be meshed at least with 6 elements per wavelength to
avoid numerical instability using linear shape functions. The modes are evaluated at the black line in Fig. 5a
and show very good agreement even for the finite element method in Fig 5b.

3.2.3 Ground effects
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Figure 6: Frequency response of averaged microphones at height of 1.5 meter.

As a final step, ground effects are included by running the calculation with half-space assumption. We
consider points on a line 2 meters away and in a height of 1.5 meters. They are spaced equally every 10
cm from -0.8 to 0.8 meters along that line. The averaged value over the number of points per frequency is
displayed for each method in Fig. 6. This shows that the peaks (both magnitude and frequency) are well
captured by the simulation models.

The comparison can be seen more closely when looking at single modes not only along a line but on an entire
surface at 2 meters distance away with a width of 2.1 meters and a height of 1.9 meters, see Fig. 7. Three
resonance frequencies are selected and the occurring mode shapes are compared. Although the difference in
magnitude is varying, it is possible to clearly identify the modes visually for DCM and BEM.
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Figure 7: Comparison of simulated sound radiation pattern of three different wheel vibration modes.
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3.3 Computational effort and limitations

Comparing the three models, the model with the baffled piston is the least computationally expensive. Only
a single circular plane is discretized into square elements, so fewer elements are needed. Also, no additional
computational effort is required for surfaces and normal vectors, since all elements have the same size and
orientation. On the other hand, the boundary element model generally considers closed volumes and approx-
imates more complex geometries with triangular meshes, which more than doubles the number of discretized
surface elements and requires detailed calculations of surface properties such as the normal vector and area
of each element. This allows the use of more complex geometries, but significantly increases the computa-
tional cost. From a computational viewpoint, the finite element method is the most computationally intensive
method. The entire volume must be discretized, and far-field calculations become difficult as the number of
elements increases considerably. For high frequencies, the mesh size must be at least six linear elements per
wavelength, making calculations over a large frequency spectrum of 50-6000 Hz impractical.

4 Conclusion

We have studied the vibrometric behaviour and acoustic emission of a train wheelset. Detailed investigation
of the three mathematical models showed that the model of a vibrating disk mounted on an infinite rigid
baffle gives results comparable to the OpenBEM code. Fluid-structure interaction in finite elements, on the
other hand, is very time consuming. Boundary conditions and mesh size require a large volume range to be
valid for the entire frequency range from 50 to 2000 Hz. The computational cost is about 50 hours compared
to 5 hours for the baffle piston approach. However the limitation of the baffled piston is alleviated by the fact
that a wheelset is very thick at the edges and thus effectively baffled. In future work, the accurate emission
models will be compared to experiments.
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Appendix

A Nomenclature

si Cross-sectional area of a discretized piston element
k Wave number
ρ Density
J1 Bessel function of the first kind
S1 Struve function of the first kind
c Speed of sound
j Imaginary number
ω Angular frequency
M Mass matrix
K Stiffness matrix
D Damping matrix
u Structural displacement
F Force
vn Normal velocity
vs Source velocity
f Frequency
ps Surface pressure
Z Acoustic impedance matrix
G Green’s function
a Disk radius
Mf Mass matrix of fluid
Kf Stiffness matrix of fluid
Df Damping matrix of fluid
Rf Coupling matrix between solid and fluid DOF
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