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Abstract
Nowadays, the industrial scenario is driven by the need of costs and time reduction. In this contest, system
failure prediction plays a pivotal role in order to program maintenance operations only in the last stages of
the real operating life, avoiding unnecessary machine downtime. In the last decade, Hidden Markov Models
have been widely exploited for machinery prognostic purposes. The probabilistic dependency between the
measured observations and the real damaging stage of the system has usually been described as a mixture of
Gaussian distributions. This paper aims to generalize the probabilistic function as a mixture of generalized
Gaussian distributions in order to consider possible distribution variations during the different states. In
this direction, this work proposes an algorithm for the estimation of the model parameters exploiting the
observations measured on the real system. The prognostic effectiveness of the resulting model has been
demonstrated through the analysis of several run-to-failure datasets concerning both rolling element bearings
and more complex systems.

1 Introduction

In the last decades, the industrial attention has been even more pointed out on the system reliability, pivotal
aspect for the target of cost and time reduction. In this contest, a suitable tool for the reduction of unnec-
essary maintenance operation is represented by the Condition Based Maintenance (CBM) which allows the
definition of a maintenance plan based on the real time condition monitoring of the system. In this field,
starting from the 1960s the machine prognostics has been widely studied with the aim of describing the
actual degradation level basing on the historical and ongoing damaging trend [1].

Firstly, the prognostic approaches were based on physical models that reproduce the failure propagation with
mathematical models that take into account the stress levels and the material properties. In this family of
method, Paris and Erdogan can be considered as the pioneer of the failure description [2]. Over the years,
their description of the crack grown has been considered as the base for the development of several physical
based models applied on the most common mechanical components as described in Ref [3].

Several years later, the difficult in describing the damaging process in complex systems led to the devel-
opment of another family of prognostic model based on the Artificial Intelligence (AI). In this contest, the
most exploited algorithm is represented by the Artificial Neural Network (ANN) which tries to describe the
working process of the human brain for analysing huge amount of data from the physical system. In the last
years, several AI based prognostic models have been presented for the assessment of the damaging level on
mechanical systems and the estimation of the Remaining Useful Life (RUL), i.e. the time left until the final
failure. Between them a particular mention has to be given to the work of Gebraeel [4] and Xiao [5]. The
general requirement of the AI is the high amount of data needed for the training of the model and this is not
even possible to obtain in real industrial application.

A good compromise between the application on complex system and the need of a reasonable number of
training data is represented by the statistical based approaches which define the degradation process in form
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Figure 1: Dependence graph for observations and state sequence inside an HMM.

of a Probability Density Function (PDF) depending on some diagnostics indicators, i.e. the observations, that
describe the failure process. In this contest, the Hidden Markov Model (HMM) enables the description of
the damaging process as a sequence of finite states where the transition between them follows the principle
of the Markov chain [6]. The theory of the HMMs, presented by Bum et al. [7], has been firstly applied for
speech recognition [8] but in the last decades it has been taken into account for the prognostics of rotating
machines and mechanical systems [9].

Statistically speaking, the conditional distribution that relates the physical observation with the actual health
state is the component of a mixture distribution and consequently the PDFs related to each model state should
belong to the same distribution family. Unfortunately, the system modifications resulting from the damaging
process modify the observation distribution in the last part of the working life. The aforementioned assump-
tion could lead to estimation errors in the last damaging stages affecting the quality and the effectiveness
of the maintenance program. This issue may be overcome through the exploitation of a generalized distri-
bution as the mixture component. This assumption allows the consideration of the distribution modification
within the model states through different values of the distribution parameters. In this direction, this work
proposes a novel iterative algorithm for the estimation of the model parameters for a Generalized Gaussian
Distribution (GGD) HMM based on the observation measured directly on the physical system.

The paper is organized as follows: Section 2 provides a brief introduction about the theoretical background
of HMMs. Then, the iterative algorithm for the model parameters estimation in the monovariate GGD case
is described in Section 3. Section 4 describes an experimental validation carried out on a rolling element
bearing run-to-failure test performed on the bearing test rig of the University of Ferrara. Finally, Section 5
provides some final remarks.

2 Theoretical background: hidden Markov models

The basis idea of HMMs is definition of a state sequence S = {S1, S2, . . . , ST } starting from a vector of
observations, i.e. some diagnostic indicators that describe the damaging process of the system, Y = {Y1, Y2,
. . . , YT }, where T is the total number of observed time spans. Two consecutive elements of S are related in
a probabilistic way according to a first order discrete Markov process:

P (St|S1, . . . , St−1) = P (St|St−1) (1)

Given a number of possible damaging state N , the state variables St are taken from a finite set s = {1, . . . ,
N} such that St = i, i ∈ s, i.e. the HMM is discrete. All the transitions between the state of an HMM are
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described by a transition matrix A(t) which entries are represented by the transition probabilities defined in
Eq.1, viz:

aij(t) = P (St+1 = j|St = i), i, j = 1, . . . , N (2)

The term hidden refers to the probabilistic relation between the observations and the state sequence, i.e. the
state sequence does not correspond to an observable event. This relation, explained in Fig.1, is given by a
PDF that makes the state observable mapping St into Yt:

fi(Yt) = f(Yt|St = i), i = 1, . . . , N (3)

Due to the assumption of a finite set of S, the marginal distribution of the data is a mixture of N components
[10], such as:

f(Yt) =
N∑

i=1

pifi(Yt) (4)

where pi are the component proportions.

Finally, the HMM can be completely defined through another parameter, known as the prior (or initial state)
probability vector Π, that describes the probability of the system to be in a given state at the first time span,
with entries:

πi = P [S1 = i], i = 1, . . . , N (5)

The previous described model parameters are defined during the training process starting from the physical
observations in order to maximize the likelihood function of the model. Once the model parameters have
been estimated, i.e. the model have been trained, the optimal state sequence, i.e. the sequence that maximizes
the condition probability between state and observations, can be estimated through the Viterbi algorithm [11].

3 Parameter estimation for generalized Gaussian distribution based
hidden Markov models

The target of the estimation procedure is the calculation of the model parameters that maximize the likelihood
of the observations given a certain state sequence [12]. Before starting with the algorithm description it is
mandatory to define some auxiliary variables, i.e. the forward and backward variables. The first type is
defined as the combination of different state sequences that leads to the same state St [13]:

α1(i) = πifi(Y1), i = 1, . . . , N (6a)

αt(j) =
N∑

i=1

αt−1(i)aijfj(Yt), t = 2, . . . , T, j = 1, . . . , N (6b)

From the opposite perspective, the backward variables are defined as the probabilities of the observations
from t+ 1 to T given the state St such as:

βT (i) = 1, i = 1, . . . , N (7a)

βt(i) =

N∑

j=1

βt+1(j)aijfj(Yt+1), t = T − 1, . . . , 1, i = 1, . . . , N (7b)

Starting from the aforementioned variables it is possible to define the probability of being in state i at the
time t as:

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(8)
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and, analogously, the probability of moving from state i to state j at time t as:

ϵt(i, j) =
αt(i)aijfj(Yt+1)βt+1(j)∑N

j=1

∑N
i=1 αt(i)aijfj(Yt+1)βt+1(j)

(9)

From γ and ϵ it is possible to calculate the transition probabilities and the prior probabilities as follows:

aij =

∑T−1
t=1 ϵt(i, j)∑T−1
t=1 γt(i)

, i, j = 1, . . . , N (10a)

πi = γ1(i), i = 1, . . . , N (10b)

For a generic continuous random variable X , the generalized Gaussian PDF is given by:

f(x) =
p

2Σ
1
2Γ
(
1
p

)e

[
−
(

|x−µ|

Σ
1
2

)p]

(11)

where µ is the mean value, p is the shape factor, Σ is the scaling factor and Γ represents the gamma function.
Eq.11 explains the basis idea of the proposed method: different values of the shape factor p lead to different
distributions, e.g. Gaussian (p = 2 and σ2 = Σ2/2), Laplace (p = 1) and uniform distribution (p → ∞).

According to Ref.[12], for a generic ellipsoidal symmetric PDF, i.e. a distribution comprising a quadratic
form, given the observation dataset Y = {Y1, Y2, . . . , YT }, the mean value and the scale factor that maximize
the likelihood function can be calculated as follows:

µi =

T∑
t=1

ρt(i)βt(i)Yt

T∑
t=1

ρt(i)βt(i)

, i = 1, . . . , N (12a)

Σi =

T∑
t=1

ρt(i)βt(i)(Yt − µi)
2

T∑
t=1

αt(i)βt(i)

, i = 1, . . . , N (12b)

where αt and βt are the previous defined forward and backward variables and ρt is defined as:

ρt(i) =
N∑

j=1

αt−1(j)aji

[
−2

∂fi(x)

∂qi(x)

∣∣∣∣∣
x=Yt

]
, i = 1, . . . , N (13)

where qi(x) is the quadratic for comprised into the PDF.

According to the basis hypothesis, it is necessary to rewrite Eq.11 to highlight a quadratic form, viz:

f(x) =
p

2Σ
1
2Γ
(
1
p

)e
{
−
[(

(x−µ)2

Σ

) p
2
]

(14)

Starting from Eq.14, the derivative inside the square brackets in Eq.13 becomes:

−2
∂fi(x)

∂qi(x)

∣∣∣∣∣
x=Yt

= fi(x)piqi(Yt)
pi
2
−1, i = 1, . . . , N (15)

Substituting Eq.15 into Eq.13 and remembering the definition of forward variables in Eq.6b, after a simple
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manipulation ρt is given by:

ρt(i) = αt(i)piqi(Yt)
pi
2
−1, i = 1, . . . , N (16)

Finally, substituting Eq.16 into Eq.12a and Eq.12b the expression of mean value and scale factor can be
written (taking also into account Eq.8) as:

µi =

T∑
t=1

γt(i)qi(Yt)
pi
2
−1Yt

T∑
t=1

γt(i)qi(Yt)
pi
2
−1

, i = 1, . . . , N (17a)

Σi =

pi
T∑
t=1

γt(i)qi(Yt)
pi
2
−1(Yt − µi)

2

T∑
t=1

γt(i)

, i = 1, . . . , N (17b)

Unfortunately, for GGDs, both mean value and scale factor depend on the shape factor and consequently the
problem can be solved only with a third equation. As described by Varanasi et al. [14], for a generalized
distribution the scale factor and the variance are related as follows:

|Σ| 12 =

(
p

T

T∑

t=1

|Yt − µ|p
) 1

p

(18)

It is possible to express this relation taking into account the Gamma function [15], viz:

Σ
1
2 =


σ2

Γ
(
1
p

)

Γ
(
3
p

)




1
2

(19)

At this point it should be noticed a pivotal aspect: the left side of Eq.18 can be rewritten according to Eq.17b.
At the same time, Eq.19 clearly depicts the proportional relation between variance and scale factor for a given
shape factor p. Combining these two consideration, it is clear how the right side of Eq.18 must be weighted
in the same way of the left side for proportionality reasons. Consequently, Eq.18 can be rewritten, after some
simple manipulations, in the following form:




pi
T∑
t=1

γt(i)qi(Yt)
pi
2
−1(Yt − µi)

2

T∑
t=1

γt(i)




1
2

=




p2i
T∑
t=1

γt(i)qi(Yt)
pi
2
−1|Yt − µi|pi

T∑
t=1

γt(i)




1
pi

, i = 1, . . . , N (20)

Finally the shape factor can be found as the zero of the following function:




pi
T∑
t=1

γt(i)qi(Yt)
pi
2
−1(Yt − µi)

2

T∑
t=1

γt(i)




1
2

−




p2i
T∑
t=1

γt(i)qi(Yt)
pi
2
−1|Yt − µi|pi

T∑
t=1

γt(i)




1
pi

= 0, i = 1, . . . , N (21)

A first look to Eq.21 brings to the light how the estimated shape factor depends on the value of the mean
and the scale factor and consequently the parameter estimation should be based on an iterative algorithm,
summarized as follows:
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Initial guess of μi and Σi

Calculation of p

Estimation of (μi,Σi)NEW

abs(μi NEW-μi) < ε ?

abs(Σi NEW-Σi) < ε ? 

PARAMETERS DEFINED

YES

μi = μi NEW

Σi = Σi NEW

NO

Figure 2: Flow chart of the estimation algorithm for the parameters of a generalized Gaussian HMM.

Step 1: Assume an initial guess for µi and σi;

Step 2: Calculate the shape factor pi through Eq.21 by means of a zero finding algorithm;

Step 3: Re-estimate µi and σi through Eq.12a and Eq.12b, respectively;

Step 4: Repeat Step 2 and Step 3 until convergence.

This iterative parameter estimation algorithm, described with the flow chart in Fig.2, is the base of the
proposed HMM, hereafter named Generalized Gaussian Hidden Markov Model (GGHMM).

4 Experimental validation

This section provides a comparison between the results obtained with the classic Gaussian based HMM and
the proposed GGHMM on a bearing run-to-failure test.

4.1 Experimental setup

The experimental validation regards the analysis of a bearing run-to failure test performed on the bearing
test bench at the University of Ferrara. As shown in Fig.3(a), the tested bearing model NSK 1205 ETN9 is
cantilever mounted on a shaft supported by two bearings model SKF SYNT 35F and driven by an electric
motor. A 3000N load is applied on the tested bearing through a lever, regulated by means of a spring
system and constantly monitored through a cell load under the bearing housing. The rotating speed has been
fixed at 2400rpm during the entire test. The vibration signal in radial direction has been measured through
a mono-axial piezoelectric accelerometer model PCB 353B18 and continuously acquired by means of a NI
CompactRio system with a sampling frequency of 51.2kHz. The analysis has been carried out on 10s length
acquisition samples extracted each hour from the dataset. The test has been stopped after 13 days and a deep
defect has been found on several rollers as clearly visible in Fig.3(b).

4.2 Results and discussion

Starting from the aforementioned time history, a GGHMM and a classic Gaussian HMM has been built for
comparing their results in terms of damaging assessment quality and prediction effectiveness. The time Root
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(a) Bearing test bench at the University of Ferrara. (b) Resulting pitting on the rollers.

Figure 3: Experimental setup and resulting defects at the end of the run-to-failure test.

Table 1: BIC values and distribution intervals of the RMS distribution for the selection of the optimal state
number.

Number of states Distribution intervals BIC value

1 0-16 1285
2 0-3 , 3-16 131
3 0-3 , 3-10 , 10-16 39
4 0-1, 1-3 , 3-10 , 10-16 45

Mean Square (RMS) shown in Fig.4 has been chosen as the observation vector for describing the degradation
trend of the system.

First of all, it is necessary to define the optimal state number N of the model. As previously described,
the number of states corresponds to the number of components of the mixture distribution representing the
distribution of the physical observations. Fig.4(b) clearly illustrates the problem statement at the base of
the proposed model. For low RMS values, i.e. system in healthy conditions, the distribution is Gaussian
but moving to the faulty stages, i.e. RMS higher than 4, the data distribution start to move away from the
Gaussian form towards a flatterer distribution. The optimal number of state can be found as the number
of mixture components that better fits the distribution of the observations. For this purpose, a suitable tool
for defining the optimal state number is the Bayesian Information Criterion (BIC). This indicator, proposed
by Schwarz [16], estimates the fitting quality through the comparison between the maximized likelihood
function and the actual distribution of the data. The BIC increases with the number of model parameters
and with the variance error between the fitted and the real distributions, thus the lower the BIC value the
better the fitting quality. Tab.1 reports the BIC values calculated for the case of uni-modal Gaussian fitting
distribution and Gaussian mixture fitting distribution with two, three and four components. The magnitude
order of difference between the uni-modal distribution and the mixture with two components highlights the
improvement given by the exploitation of a multi-modal distribution. The best result is given by the model
with three components, i.e. a model with three damaging states, representing the healthy stage, the early
damaging state and the high failure state.

The availability of a single run-to-failure test led to the need of exploiting the same dataset for both training
and validation phases. In this direction, the observation vector has been divided into two different datasets
composed by samples alternatively picked from the original observation vector. The selected model is a three
state first order left-right model, i.e. a model where the state transition is enabled only for increasing dam-
aging level, due to the monotonically increasing trend of the RMS that describes an irreversible damaging
process.

Tab.2 compares the transition probabilities and the prior probabilities obtained under the hypothesis of Gaus-
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Figure 4: Time history for run-to-failure test: (a) time RMS values from the raw signals, (b) PDF of the RMS
with fitted Gaussian distributions.

Table 2: Model parameters: initial state and transition probabilities.

Gaussian Generalized Gaussian

A
0.98 0.02 0 0.99 0.01 0

0 0.93 0.07 0 0.97 0.03
0 0 1 0 0 1

Π 1 0 0 1 0 0

Table 3: Estimated parameters of the conditional PDFs.

State Gaussian Generalized Gaussian
# µ σ µ p Σ

1 1.09 0.23 1.12 2.01 0.35
2 4.78 1.31 5.06 1.93 2.14
3 12.1 2.45 13.8 2.61 1.25

sian distribution and GGD. It should be noticed that the different distribution does not affect the probabilities
being them strictly connected to the trend of observations and not on the data distribution. On the contrary,
the distribution parameters (Tab.3) and the estimated PDFs (Fig.5) explains the difference between the ex-
ploitation of different basis distributions. Taking into account the first state, the healthy conditions of the
system reflects on a Gaussian data distributions. This aspect is confirmed by the distribution parameters (the
mean value is the same and the shape factor is around 2 as for the Gaussian distribution) and the distribution
form can be considered as the same in both cases. Moving to the early damage stage, i.e. the second state,
the difference between the results starts to be considerable due to a slight departure of the data distribution
from the Gaussian condition (GGHMM estimate a flatter PDF with an higher mean value). The last state,
i.e. end of the working life, demonstrates the aim of the proposed method. The actual data distribution is far
from a Gaussian PDF and is more similar to a uniform distribution. As a consequence, the Gaussian based
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Figure 5: Estimated PDFs after the training process for: (a) Gaussian distribution, (b) generalized Gaussian
distribution.

Table 4: Dimensionality and maximized log-likelihood for both estimated mixture PDFs.

Basis distribution Max Log-likelihood Dimensionality

Gaussian -26.78 6
Generalized Gaussian -22.59 9

analysis is no longer able to identify the correct mean value due to the necessity of exploit a distribution as
flatter as possible. On the contrary, the GGHMM is able to estimate the exact mean value of the distribution
and the estimated shape factor (p = 2.61) describes the departure from the ideal Gaussian form towards to
the uniform distribution (p → ∞).

This qualitative comparison can be formalized into a more quantitative analysis by evaluating the fitting
quality of the two mixture distributions. For this purpose, the BIC value can not be taken into account due
to the different number of free parameters of the Gaussian distribution and the GGD. In order to overcome
this limitation, the Likelihood Ratio (LR) test represents a suitable solution for the quantitative evaluation of
the fitting quality of two or more distributions. The LR, defined by Giudici et al. [17] as twice the difference
between the miximized log-likelihood functions of the two distributions, is exploited as the test statistics
and it has been demonstrated that for large number of samples it follows a χ2 distribution with degrees of
freedom corrisponding to the difference between the free parameters of the compared distributions. Starting
from the maximized log-likelihood function summarized in Tab.4, the LR is 8.38. Taking into account the
95% quartile of the χ2(3) (7.81) the H1 hypothesis is confirmed and consequently the GGD represents the
best fit of the actual RMS distribution.

The trained models have been applied on the aforementioned validation dataset with the aim of estimating
the state sequence, final target of each HMMs. Fig.6 reports the state sequences estimated starting from the
trained HMMs based on the Gaussian distribution and the GGD. Firstly, comparing Fig.6 and Fig.4(a) it is
possible to note how both state sequences correctly reproduce the RMS trend, i.e. correctly describe the
fault evolution. On the other hand, the comparison between Fig.6(a) and Fig.6(b) highlights two important
differences related to pivotal aspects in the prognostic field. The first one regards the presence of sparse
points in the state sequence where the model is not able to detect the actual damaging state. Those points are
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Figure 6: Estimated state sequences on the validation dataset starting from: (a) Gaussian model, (b) general-
ized Gaussian model.

related to isolated peaks in the RMS trend (see Fig.4(a)) and this common issue is a direct consequence of
uncertainties on the physical system, the measuring chain and the signal processing needed for the features
extraction. In Fig.6(a) it is possible to note how those RMS peaks reflect on a state transition for the Gaussian
based model although the healthy conditions. Regarding this aspect, the GGHMM seems to present ah higher
robustness estimating the health state even in presence of measuring uncertainties consequently avoiding
unnecessary alarms on possible incipient faults.

The second aspect to be investigated is the state transitions, pivotal for the estimation of the RUL and the
planning of the maintenance operations. Fig.6 shows how the transition between state 1 and state 2 is
detected by the two models at the same time span. This results is easily explainable taking into account that
this transition regards the first appearance of the fault and consequently it mainly depends on the diagnostic
capability of the indicator considered as physical observation instead of on the basis model distribution.
Moving to the transition between state 2 and state 3, i.e. between early damage level and final failure, the
results obtained with the two basis distributions are significantly different. The lower mean value of the
estimated Gaussian distribution for the state 3 (Fig.5(a)) reflects on a earlier transition to the last damaging
stage that does not describe the actual damaging process described by the RMS trend. On the contrary, the
better fitting quality reached by the GGD leads to a correct estimation of the state transitions, pivotal task
for diagnostic purposes. The correct estimation of the transition to the final state is fundamental from the
predictive maintenance point of view: an early estimation of the state transition reflects on a early estimation
of the final failure and consequently leads to the planning of an unnecessary machine downtime due to the
maintenance operation.

This experimental application of the proposed method demonstrates the improvement given by the exploita-
tion of a generalized distribution for building an HMM for the prognostics of rotating machines. The main
aspects of improvement are represented by the higher robustness of the proposed method with respect to pos-
sible outliers in the observation vector and the better fitting quality given by the exploitation of a distribution
that allows the modifications of the PDF form within the model states.
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5 Final remarks

In the last decades, the HMMs have been widely exploited for prognostic purposes in the rotating machinery
field. This paper aims to propose a novel HMM that exploits the GGD as the conditional PDF in order to
allows the distribution modifications within the different damaging states. A novel iterative algorithm for
the estimation of the model parameters under the hypothesis of GGD starting from the observation from the
physical system has been proposed. The improvement given by the proposed method with respect to the
classic Gaussian based HMM has been demonstrated through the analysis of a bearing run-to-failure test
performed on the bearing test bench at the University of Ferrara. The main effect of the exploitation of a
GGD can be seen in terms of fitting quality of the estimated PDF with respect to the real observation distri-
bution. The better estimation, specially in the last damaging stage where the distribution moves away from
the Gaussian form, leads to a more accurate identification of the state transition enabling a more effective
planning of the maintenance operations. At the same time, the proposed method proves an higher robust-
ness with respect to the possible presence of outliers in the distribution vector related to uncertainties in the
physical system, the measuring chain and the data processing.

The proposed method regards the case of monovariate mixture distributions, i.e. with a single observation
vector, useful for the analysis of single comonents, e.g. bearings and gears. The extension of the multivariate
case, i.e. with several observation vectors for the analysis of complex systems, is now under study and
development.
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