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Abstract
The Sparse Identification of Nonlinear Dynamics (SINDy) toolbox can be used to estimate a nonlinear model
of dynamical systems. SINDy is a dictionary method that applies sparse regression to a library of candidate
functions. The effectiveness of SINDy has been demonstrated in a variety of fields. One such application
is the modelling of the wake of a submerged cylinder in a flow. This is regarded as a canonical system for
fluid-structure interactions. The SINDy method was found to be successful in modelling the flow around a
stationary cylinder. In this work, the technique is applied to the wake of a submerged cylinder undergoing
an imposed periodic oscillation. The experiment therefore strongly relates to the case of vortex-induced
vibrations (VIV). VIV is challenging to model given that it exhibits much richer nonlinear dynamics than
the stationary case. The study is carried out on the vorticity field in the wake of the cylinder. This work
demonstrates that SINDy is capable of capturing the observed nonlinear dynamics.

1 Introduction

Of interest is capturing the dynamics of a flow field in the wake of an oscillating cylinder and using this
information to obtain a reduced order surrogate model for the system. This is of value as using a reduced
order model to make predictions can save valuable time for real-time applications by avoiding the need for
repeating costly simulations or experiments.

Thanks to the rapid improvements in computational technology, data-driven modelling techniques have in-
creased in popularity and found their way into many fields of research, among which the study of fluid dy-
namics. Many fluid-dynamical problems are very complex and high-fidelity predictions can only be achieved
by numerically solving the Navier-Stokes equations or by performing experiments. Both methods are time-
consuming and costly, which often makes them impractical for applications with limited resources [1].

An example of nonlinear problems that are hard to model are fluid-structure interactions, such as vortex-
induced vibrations (VIV). VIV are of particular interest for many applications given that they pose a potential
hazard to structural health, especially in regimes of near-resonant frequency locking of the vortex shedding.
A canonical system for studying VIV is the flow field in the wake of an oscillating circular cylinder [2]. In
such a system, there are several distinct wake regimes that are triggered by the oscillation frequency. Of
interest is the lock-in regime, which occurs when the cylinder oscillates near the natural vortex-shedding fre-
quency, also called the Strouhal frequency fSt. In this case the vortex-shedding will lock on to the oscillation
frequency, resulting in increased loads [1]. The goal of this work is to obtain a data-driven model of such a
system that gives insight into the underlying dynamics of the resulting cylinder wake.

The Sparse Identification of Nonlinear Dynamics (SINDy) method is a technique developed by Brunton et
al. [3] to identify differential equations that govern the dynamics of nonlinear systems. As such it can be
used to provide insight into the nonlinear relationships of different fluid variables. It is a technique that has
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Figure 1: The location of the studied data. From 0.15 to 3 in the x-direction and from −1 to 1 in the y-
direction. The central point of the oscillating cylinder is positioned at [0, 0].

been successfully applied to the wake of a stationary cylinder [3]. As the wake of an oscillating cylinder
is dependent on more variables, e.g. the flow parameters as well as the cylinder displacement, it will show
more complex behaviour than that of a stationary cylinder. As such it is interesting to evaluate the ability of
SINDy to model the wake of an oscillating cylinder.

To do this efficiently, an order reduction of the data field is required. SINDy can then be applied to the
dynamical evolution of the reduced order state. A Proper Orthogonal Decomposition (POD) order reduction
was chosen for its ability to provide insight into the spatial structures of the system. SINDy was then used
to identify the dynamics of the corresponding POD coefficients. In this work we worked with vorticity data
from a periodic experiment in the lock-in range of the system to enable a meaningful POD-basis.

The objective of this work can therefore be summarised as using SINDy to create an ordinary difference
equation model that describes the dynamical vorticity field in the wake of an oscillating cylinder in the lock-
in regime. The studied system and the data-acquisition are described in Section 2. In Section 3, the SINDy
method is discussed. Section 4 demonstrates the resulting model. The results are further discussed in Section
5. Conclusions are formulated in Section 6.

1.1 Notational conventions

Throughout the work, matrices will be denoted by bold faced capital letters, e.g. A ∈ Rn×m, vectors are
given bold faced lower case letters, e.g. a ∈ Rn, and non-bold lower case letters indicate scalars, e.g. a.
Vector functions will be denoted by bold faced italicized letters, e.g. f().

2 Data

In this work, the phenomenon of vortex-induced vibrations is studied from the viewpoint of the vorticity
field in the wake of an oscillating cylinder. A 2-dimensional computational fluid dynamics (CFD) simulation
of a flow about an oscillating cylinder was used to generate the studied time-series data. The simulation
was performed in the open source CFD environment OpenFOAM [4], which implements a finite-volume
formulation of the Navier-Stokes equations. A more in-depth discussion on the CFD computations as well
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Figure 2: An example of SINDy. Sparse regression is performed to fit the library of candidate functions to
measurements taken from a system, identifying the model structure used for data generation. Source: [6]

as a validation with respect to literature can be found in Decuyper et al. [1].
The flow regime was characterised by a constant Reynolds number of Re = 100, resulting in laminar, mainly
2-dimensional vortex-shedding. During the experiment, the cylinder was forced to oscillate along a trajectory
perpendicular to the incoming flow. The oscillation frequency was kept constant at 2.7 Hz, which is 0.9 times
the Strouhal frequency of fSt = 3.0 Hz. This close proximity to the Strouhal frequency caused the vortex
shedding to adjust its natural frequency to the imposed frequency. This is called the lock-in regime [5]. The
data therefore contain a regime of periodical vortex shedding at the imposed frequency.

A snapshot of the data that was studied in this work is displayed in Figure 1. With the fluid flowing from left
to right in the x-direction, the studied data was selected form 0.15 m to 3.0 m in the x-direction and -1 m to
1 m in the y-direction, relative to the central position of the cylinder. The field was sampled at a frequency
of 40 Hz.

3 SINDy

The Sparse Identification of Nonlinear Dynamics (SINDy) is a data-driven modelling technique that was
developed by Brunton et al. [3]. Sparsity is promoted considering that the dynamics of most physical
systems are governed by only a few relevant terms. In other words, the governing equations of physical
dynamics are often sparse when considering a dictionary of nonlinear functions.

With the state of a system at time t denoted by x(t) ∈ Rn, SINDy is able to identify dynamical models that
are defined by the ordinary differential equation (ODE) form

ẋ(t) = f(x(t)), (1)

by finding a parsimonious expression for the function f(x(t)) that governs the dynamical behaviour of the
system states. This is done by first choosing a library of candidate functions of the states, Θ(X) and then
finding a sparse set of coefficients that correspond to these functions which are stored in the sparse matrix,
Ξ, as shown in Figure 2 [3][6].

The method starts from a time series of state measurements, X :=
[
x(1) x(2) . . . x(N)

]T ∈ RN×s,
with N the number of samples and s the number of states. Both the time derivatives, Ẋ, and the values of
the library functions, Θ(X) are calculated for each time step. Then a sparse regression [7][3] is performed
to find the coefficients of the most significant terms of Θ(X). This results in the sparse coefficient matrix Ξ,
where all other coefficients are reduced to zero. Equation 1 then becomes
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ẋ(t) = f(x(t)) = Θ(x(t))Ξ, (2)

or, for the whole data set
Ẋ = Θ(X)Ξ. (3)

A more in-depth explanation of this method can be found in [3][6]. Figure 2, demonstrates the method
on simulation data extracted from a chaotic Lorenz system. The system is defined by the set of equations
shown on the left. In this case a function library of monomials up to the 5th degree is chosen. The sparse
coefficient matrix, Ξ = [ξ1 ξ2 ξ3], then defines the significance of each monomial when calculating the
time derivatives of the states [6]. For example observe from Figure 2 that ẋ is constructed using only the
first two monomials. Hence only two coefficients are active in ξ1 (indicated in blue). This corresponds to the
governing equation seen on the left. As the example shows, it is possible to identify the ODE structure that
was used to generate the data.

In addition to continuous time ODEs, SINDy is also able to generate discrete time ordinary difference equa-
tions of the form x(k + 1) = f(x(k)). In this work discrete-time models are constructed.

3.1 Proper Orthogonal Decomposition

We now know that SINDy can be used to obtain a dynamical model. However, in order to keep the estimation
problem tractable, the state variable should remain of moderate size. Note that the two-dimensional time
steps of the field data are reshaped into large vectors, x(t), and stored in the data matrix, X. Given that the
goal of this work is to model these high-dimensional field data, an order reduction is required.

This can be done using an autoencoder [8], but in this work the choice was made to use a Proper Orthogonal
Decomposition (POD) order reduction of the periodic data. This is achieved by projecting the data onto the
space spanned by a limited amount of spatial POD modes, U. This is called a truncated POD-basis, Ur. It
can be shown that this results in the best possible least squares linear approximation of the data matrix by a
lower order matrix [9].

It is important to note that reconstructing the original data matrix from a reduced order approximation will
result in a reduction in resolution. This isn’t necessarily an unwanted outcome as it enables us to remove
noise, but it is important to choose the order high enough to reconstruct the important features.

3.1.1 Order reduction

To reduce the order of the vorticity field 10 spatial POD modes were used. The relative error of the 10 mode
reconstruction was 3.87%. The modes are shown in Figure 3 (a). It can be seen that most modes come in
pairs with a common feature that is phase shifted by about 90°. The most significant exception to this is
the mode that represents the mean field, m. The mode paired with y1 wasn’t considered because it didn’t
significantly improve the model performance.

The reduced states for each time step, xr(t) are obtained by projecting the field data, x(t), on the reduced
POD-basis:

xr(t) = U−1
r x(t), (4)

with Ur the reduced set of POD modes and x(t) the snapshots of the data field. The corresponding reduced
states as a function of time are shown in Figure 3 (b). Note that the amplitudes of the states decrease from
500 to 20, indicating that the last states correspond to less significant details in the data. Again the phase
shift of about 90° is visible for the pairs. As such, alternating between them causes the common features to
roughly move along the flow direction as time passes. It is clear that reducing the time-series field data to
the evolution of these 10 variables in time is a significant order reduction. The SINDy model will be created
with the goal of simulating the evolution of the reduced states through time in a way that provides insight
into the underlying dynamics.
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Figure 3: (a) The 10 most significant POD modes of the vorticity field. The modes are cropped in the y-
direction for clarity. (b) Shows the projection values of the data onto the corresponding modes.

3.2 Coefficient of performance

As coefficient of performance we will use the relative root mean squared error (RMSErel), calculated as the
relative Frobenius norm:

RMSErel =
∥Y − Ŷ∥F

∥Y −Y∥F
, (5)

xith Y the true data matrix, Ŷ reconstructed data matrix and Y the time average of Y. The overall model
performance is given by the RMSErel of the whole time series of X̂. To evaluate the error evolution through
time we can calculate the RMSErel for every individual time step of the data x̂(t). For ease of reading we
will simply name this metric the relative error for the remainder of this work.

3.2.1 Error sources

As shown in Figure 4, there are two sources of errors in the reconstruction of the data. The data represented
in the original dimensions are indicated in green, while the data converted into the reduced order POD-space
are represented in blue. First there will be the resolution loss by using a truncated POD basis. Then the
SINDy model, which captures the system dynamics in the reduced order space, will also have an error, the
model error. We will define the reconstruction error as the final (combined) error of the reconstruction.

4 Results

The resulting ordinary difference equation model was created using the PySINDy package [10][11] in
Python. It captures the dynamics of the wake vorticity while it is represented in the reduced order POD
space. The Sparse Relaxed Regularized Regression (SR3) optimiser [12] was used for this application be-
cause it consistently resulted in stable models, even when increasing the order from 3 to 10. A polynomial
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Figure 4: Representation of error sources. Data in the original dimensions are shown in green, data repre-
sented in the reduced order POD-space are shown in blue.

dictionary of order 2 was used in combination with a regularisation threshold of 0.035 and with a relaxation
value µ = 1. The latter didn’t seem to result in any significant changes in the model performance.

4.1 Model structure

The retained monomial terms of the resulting difference equation are shown in the equation below (6). The
full equation can be found in Appendix B. For clarity the state variables are named after their corresponding
modes, as shown in Figure 3. Studying the equation, it becomes apparent that all second order terms have
been removed during the sparse regression, resulting in only first order terms. This is stressed by denoting
the functions as f1 in (6).
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Figure 5: Depiction of the state values through time in blue overlaid by the SINDy model reconstructions in
red.

Interesting to note is that, in the full difference equation in Appendix B and the example below, when looking
at the dynamics of each mode pair, e.g. u1 and u2, the paired modes have a similar effect on their own
dynamics. As demonstrated in (7) and (8), respectively uk+1

1 ∝ 0.916 uk1 and uk+1
2 ∝ 0.911 uk2 . On

the other hand their effects on each other are approximately opposite, uk+1
1 ∝ +0.427 uk2 in (7) while

uk+1
2 ∝ −0.397 uk1 in (8):

f1
1 = uk+1

1 = 0.916 uk1 + 0.427 uk2 + . . . (7)

f1
2 = uk+1

2 = −0.397 uk1 + 0.911 uk2 + . . . (8)

The effects of the other modes on the pair are usually much lower. This becomes more distinct in the
functions describing the subsequent pairs.

4.2 Model performance

The evolution of the modes and their reconstructions by the SINDy model are depicted in Figure 5. It is clear
that all states except for y1 are modelled accurately, while y1 decays rapidly.

The evolution of the relative errors through time is given in Figure 6. It is interesting to note that the
truncation error and the model error are approximately in counter-phase, resulting in a beneficial accumulated
error when reconstructing the data.

As shown in Table 1, the 10-mode POD-representation resulted in a relative reconstruction error of 0.0387.
The error of the SINDy model in capturing the system dynamics in the POD-space was 0.0310. The overall
error of reconstructing the vorticity field from the model predictions is 0.0504.

5 Discussion

We have shown that a discrete time SINDy model can accurately capture the dynamical behaviour of the
vorticity field in the wake of a periodically oscillating cylinder when projected onto a 10-mode POD-space.

NON-LINEARITIES: IDENTIFICATION AND MODELLING 2617



Figure 6: Evolution of the relative error sources through time. The errors caused by the POD truncation and
the SINDy model are shown in dashed lines. The final reconstruction error is displayed as a full red line.

Table 1: Relative errors

Relative Frobenius norm
POD truncation 0.0387
Model error 0.0310
Reconstruction error 0.0504

Firstly it is interesting to note that the model error is in counter-phase with POD truncation error, adding up
to the reconstruction error of 5 %. This is in the same order of magnitude as the uncertainty on the CFD data
themselves, meaning that lower reconstruction errors would not be meaningful.

Secondly the decay of the state corresponding to y1 indicates that the priority of modelling this state accu-
rately was low. The high amount of terms needed to model this state in the absence of its paired state in
combination with its low significance compared to the other states resulted in the sparse regression dimin-
ishing this state.

Additionally, the removal of all second order monomials resulted in a set of only first order difference equa-
tions. This indicates that the periodic data that was studied in this work provides a highly linear viewpoint
into the overall nonlinear dynamical system when using the POD-basis. As such, a linear model could be
constructed that was able to capture the behaviour of this nonlinear system in a limited regime. Further work
will be needed to expand to a range of system regimes.

It is also interesting to note that the periodicity of the vortex shedding is clearly reflected in the relationships
in the POD-mode pairs. A positive or negative value for one respectively causes its paired mode to grow
or decrease while the opposite holds for the influence it feels from its paired mode. At the same time
they influence themselves with similar strengths. This results in the paired modes alternately growing and
decaying. Combined, this roughly causes their corresponding feature to move in the direction of the flow as
time progresses. As such, the model is able to provide a level of insight into the system.
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6 Conclusion

In this work the dynamical behaviour of the periodic vorticity field in the wake of an oscillating cylinder was
identified by training a SINDy model on the 10-mode POD-space projection of the spatiotemporal field data.
The model captured the dynamics with a relative error of 3.1 % and yielding an overall data reconstruction
with a relative Frobenius norm of 5 %. The difference equation structure of the model made it possible to
draw conclusions about the studied system, such as its linearity and periodicity.
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Appendix

A Nomenclature

The next list describes several acronyms and symbols that will be used within the body of this work. Matrices
are denoted by bold faced capital letters, e.g. A ∈ Rn×m, vectors are given bold faced lower case letters, e.g.
a ∈ Rn, and non-bold lower case letters indicate scalars, e.g. a. Vector functions will be denoted by bold
faced italicized letters, e.g. f().

A.1 Acronyms

CFD Computational Fluid Dynamics
POD Proper Orthogonal Decomposition
RMSErel Relative Root Mean Squared Error
SINDy Sparse Identification of Nonlinear Dynamics
SR3 Sparse Relaxed Regularized Regression

A.2 Symbols

t time (s)
X measured system state matrix
Ẋ time derivative of the system state matrix
X̂ reconstructed system state matrix
X time average of the measured system state matrix
x(t) measured system state vector at one time step
ẋ(t) time derivative of the measured system state vector at one time step
U matrix containing the POD-modes
Ur matrix containing the reduced or truncated POD-modes
xr(t) reduced state vector at one time step
f() function
f() vector function
Θ() function library matrix
Ξ function coefficient matrix
ξ function coefficient vector for single state
fSt Strouhal frequency (Hz)
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B Full model

uk+1
1 = −260.936 + 0.916 uk1 + 0.427 uk2 + 1.119 mk − 0.135 vk1 − 0.262 vk2 − 0.033 wk

1 + 0.019 xk1

+ 0.011 xk2 − 0.004 yk1

uk+1
2 = 12.147− 0.379 uk1 + 0.911 uk2 − 0.052 mk + 0.013 vk1 + 0.012 vk2 − 0.023 wk

1 − 0.019 wk
2

− 0.001 xk1 + 0.001 xk2 + 0.003 yk1

mk+1 = 21.803− 0.007 uk1 − 0.001 uk2 + 0.902 mk − 0.202 vk1 + 0.034 vk2 + 0.017 xk1 − 0.013 xk2

vk+1
1 = 23.472 + 0.001 uk1 − 0.073 mk + 0.674 vk1 + 0.780 vk2 + 0.008 wk

1 + 0.003 wk
2 − 0.026 xk1

+ 0.004 xk2 + 0.002 yk1

vk+1
2 = −60.423− 0.003 uk2 + 0.222 mk − 0.766 vk1 + 0.603 vk2 − 0.006 wk

1 − 0.002 wk
2 − 0.026 xk1

− 0.020 xk2 + 0.003 yk1

wk+1
1 = −6.426− 0.001 uk1 + 0.026 mk − 0.010 vk1 − 0.008 vk2 + 0.292 wk

1 + 0.959 wk
2 + 0.004 xk1

+ 0.001 xk2 − 0.001 yk1

wk+1
2 = 6.160− 0.001 uk1 − 0.002 uk2 − 0.027 mk + 0.012 vk1 + 0.008 vk2 − 0.953 wk

1 + 0.293 wk
2

+ 0.002 xk1 + 0.001 xk2 − 0.004 yk1

xk+1
1 = −25.873− 0.002 uk2 + 0.110 mk − 0.017 vk1 − 0.026 vk2 + 0.001 wk

1 − 0.002 wk
2 − 0.126 xk1

+ 0.997 xk2 + 0.004 yk1

xk+1
2 = −1.335 + 0.006 mk + 0.001 vk1 − 0.004 vk2 − 0.001 wk

1 + 0.002 wk
2 − 0.987 xk1 − 0.128 xk2

− 0.001 yk1

yk+1
1 = 1.537− 0.007 mk + 0.001 vk2 − 0.001 wk

2 − 0.002 xk2 − 0.527 yk1

NON-LINEARITIES: IDENTIFICATION AND MODELLING 2621


