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Abstract
The spatial design of phononic crystals and acoustic-elastic metamaterials is based on translational periodic-
ity and, hence, their wave phenomena, such as the directionality and topological guiding, are restricted to the
crystallographic symmetries (e.g., 2-, 4- and 6-fold). This conference paper summarizes our recent efforts
on expanding the wave manipulation possibilities (e.g., directionality and topological guiding) of architected
materials to quasicrystals exhibiting higher order rotational symmetries, such as 10-fold. They open new
possibilities for wave applications such as focusing, sensing, guiding and imaging beyond the symmetries
provided by the periodic configurations.

1 Introduction

Phononic crystals and acoustic-elastic metamaterials are traditionally based on translational periodicity, and
hence, their wave directionality phenomena as well as their topological waveguide features are restricted
to the crystallographic symmetries (e.g., 2-, 4- and 6-fold) [1, 2, 3, 4]. This conference paper summarizes
our recent efforts on expanding the wave manipulation possibilities of architected materials to quasicrystals
exhibiting higher order rotational symmetries, such as 5-, 8- and 10-fold [5, 6, 7]. This work outlines pow-
erful tools as well as highlights the rich underlying physics behind the wave phenomena in quasicrystalline
architected materials. It opens new possibilities for applications involving the unusual wave front directivity
with high-order symmetry, such as focusing, sensing, and imaging beyond the symmetries provided by the
periodic configurations. Moreover, these results expand the possibilities of robust topological wave transport
to the so far largely unexplored symmetries of quasicrystals, which may pave the way to novel applications
and devices. This paper is organized as follows: following this introduction, Section 2 describes the design
of the quasicrystalline plates. Next, section 3 describes the dispersion properties and wave directionality
results, followed by the topological valley modes in section 4. Section 5 summarizes the main contributions
of this work.

2 Quasicrystal design

The strategy to design the quasiperiodic elastic metamaterial plates is based on the geometric representation
in 2D wave number space [8, 5]. A continuum distribution in physical space ϕ(r), with r = [x, y] ∈ R2,
is defined by directly assigning N Bragg peaks in reciprocal space (k = [kx, ky] ∈ R2) as points in the
two-dimensional Fourier spectra. These Bragg peaks are angularly spaced by θN = 2π/N over a circle of
fundamental wave number k0. In this work, only even number of peaks is considered to guarantee a real
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Figure 1: Design strategy for the 10-fold quasicrystal plate with vf = 0.30: two-dimensional physical dis-
tribution by assigning 10 Bragg peaks (a), two-phase distribution after applying the threshold procedure and
its Fourier transform (i.e., diffraction pattern) (b): phase A (white) and phase B (black). Three-dimensional
quasiperiodic plate obtained by extruding phase B towards z direction, which produces the geometry in (c).
Adapted from Beli et al. [6].

distribution in physical space. Therefore, reciprocal and physical spaces can be expressed, respectively, as:

ϕ̂(k) =

N−1∑

n=0

δ(k− kn), and ϕ(r) =

N−1∑

n=0

eıkn·r, (1)

where δ is the delta function that locates the wave number kn of each Bragg peak; moreover, kn =
k0[cos (nθN ) , sin (nθN )], with n = 0, ..., N − 1 and k0 = 2π/λ0 is the radius of the design circle in
reciprocal space, where λ0 is the fundamental wavelength. In this design strategy, a single parameter N de-
fines the rotational symmetry of the distribution in physical space, which leads to periodic distributions (1D
bilayer for N = 2, square pattern for N = 4 and hexagonal pattern for N = 6) or quasiperiodic distributions
with rotationally N -fold symmetry such as the 8-fold and 10-fold.

For practical implementations in elastic continuum structures, a two-phase distribution is desirable, and
hence, a threshold procedure is applied to the real continuum field. This new distribution ϕ̄(r) assumes only
two phases, which are produced by comparing the local field level to a chosen level ϕ̄0: a phase A (white) is
defined for ϕ(r) ≤ ϕ̄0 and a phase B (black) is defined for ϕ(r) > ϕ̄0. Based on the phase ratio, a volume (or
filling) fraction is defined by vf = vB/(vA + vB). Herein, the metamaterial plate is designed using a single
material with geometric thickness modulation given by ϕ̄ (r), where a flat plate (phase A) is partially covered
in one side by pillars (phase B). Figure 1 summarizes the design process, from the choice of Bragg peaks
in the reciprocal space to the three-dimensional plate with 10-fold symmetry and vf = 0.30. Reference
[5] details this design strategy for other fold symmetries and volume fractions considering 2D domains with
material phase modulation and in-plane wave behavior, i.e. steps (a-b) on Fig. 1.

3 Wave directionality

The dispersion properties are used to understand and predict the dynamic behavior of phononic and metama-
terial structures related to wave propagation and manipulation. For periodic materials, the band structure is
obtained by enforcing Bloch conditions on the unit cell boundaries. However, Bloch-Floquet theory cannot
be applied to the present quasicrystalline plates due to their lack of translational periodicity. Instead, we
rely on transient wave-fields u(x, y, t), and their correspondent 3D-FT (Fourier transform) Û(kx, ky, ω), to
estimate the dispersion properties of the quasicrystalline plates.
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Figure 2: Approximated dispersion surface of the 10-fold quasicrystal plate obtained by 3D Fourier trans-
form of the time response: 3D view (a), sectional view on κxω plane (b), and contours at specific frequencies
showing the transition between two bands twisted by θN/2 (c). Directional wave behavior for the 10-fold
metamaterial plate at 9.3 kHz (d): the first row corresponds to the RMS of the wave field averaging across all
time, the second row corresponds to the RMS of the wave number contours averaging across all frequencies,
and the third row corresponds to the estimated group velocity contour at the center frequency. Adapted from
Beli et al. [6].

The dispersion behavior of the quasicrystalline plates is exemplified by using the 10-fold case (i.e., N = 10),
whose the results are summarized in Fig. 2. The dispersion surfaces for the flexural waves are characterized
by a 10-fold rotational symmetry that manifests throughout the majority of the bands, as highlighted by the
contours displayed for selected frequencies. In particular, several bands of highly anisotropic contours are
identified, which are characterized by 10 separated peaks of high amplitude in reciprocal space forming the
10-fold symmetry. We note that the rotational symmetry twists by θN/2 = 18o in certain frequency ranges
shown in Fig. 2(b), for example around 22, 26 and 35 kHz. This behavior highlights how the dispersion
properties of the quasicrystalline plates are characterized by several bands that preserve the N -fold symmetry
of the design, and may present different anisotropy directions. Specifically, at 9.3kHz the waves propagate
preferentially along 10 symmetric directions in a wave-beaming fashion as shown in Fig. 2(d). The Fourier
transform shows 10 Fourier peaks that characterize such behavior, while the group velocity further confirms
the preferential directions of wave propagation.

The effects of directionality provided by the higher order symmetries on the wave diffraction are also il-
lustrated. For this purpose, the upper half of the quasicrystal domain considered in the previous section
(10-fold, x = [−0.1, 0.1] m and y = [0, 0.2] m) is combined to an uniform plate (x = [−0.1, 0.1] m
and y = [−0.075, 0] m) with constant thickness hU = 4 mm. A line-source excitation is centered at the
bottom of the uniform plate (x = 0 and y = −0.075 m), so that the incident wave propagates along the
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Figure 3: Wave diffraction at 9.3 kHz in a half of the extended 10-fold quasiperiodic metamaterial plate,
where the incident wave with width bs = 0.02 m (a-b) or bs = 0.06 m (c-d) are aligned θ = 0 (a, c)
or twisted by θ = θN/2 (b, d) in relation to one of the Bragg peaks in reciprocal space at 9.3 kHz (first
line). The top line depicts the RMS of the displacement field averaging across all time and the bottom
line the correspondent RMS of the wave number contour averaging across all frequencies: κy > 0 for the
quasicrystal plate and κy < 0 for the uniform plate. Diffraction patterns with focusing from one to four
branches have been created. Adapted from Beli et al. [6].

positive y direction until it reaches the interface with the quasicrystalline domain (y = 0). The diffraction is
illustrated by employing an excitation frequency of 9.3kHz, corresponding to the beaming behavior reported
in Fig. 2(d). The results are summarized in Fig. 3 for different conditions that showcase different possible
scenarios; the top row displays the RMS of the wave-field, while the bottom row displays the RMS of the
reciprocal space content (the upper half, κy > 0, corresponding to the waves propagating in the quasicrystal,
and the bottom half, κy < 0, corresponding to the incident wave in the homogeneous plate). The results in
(a,b) correspond to a narrow line source of width 20 mm, which provides a broad wave number content for κx
for the incident wave, while in (c,d) a wider line source of 60 mm produces an incident wave with narrower
wave number content for κx. These different conditions are selected to illustrate a wealth of possibilities for
wave diffraction that result in different numbers and orientations of directional branches propagating in the
quasicrystalline plate, which can shift the wave behavior from beaming (i.e., multi-focal) to focusing (i.e.,
uni-focal) by controlling the quasicrystal orientation and the source width.

4 Topological valley modes

Next, we investigate the existence of topological valley-type waves in quasicrystalline structures. A design
strategy similar to Section 2 is used to obtain the domains with distinct topological invariants. While the
hexagonal lattice enables the construction of topological waveguides containing 60o corners, the decagonal
lattice allow sharp corners in the topological waveguides such as 36o. The existence of valley states is well
defined for periodic lattices; starting with the 6-fold symmetric lattice exhibiting Dirac cone degeneracy, 3-
fold symmetric lattices with topological gaps characterized by opposite valley Chern numbers are obtained
by breaking the inversion symmetry of the unit cell. This procedure is commonly defined as function of a
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Figure 4: Hexagonal lattice (a.1) composed of two subsets of 3-fold lattices and the correspondent band
inversion (a.2). Decagonal lattice (a.1) composed of two subsets of 5-fold lattices and the correspondent
band inversion (a.2). The gaps close at γ = 0, the structures with gaps in opposite sides of the band inversion
(i.e., γ < 0 and γ > 0) present distinct topological invariant.

single parameter (e.g., γ, which represents the mass modulation) that produces a band inversion as the gap
closes and re-opens between the distinct 3-fold configurations with different topological properties as showin
in Fig. 4(a). We extend this approach to 5-fold symmetric quasicrystals, where the band inversion is also
observed as a function of a single parameter, with the band gap closure occurring for an intermediate 10-fold
symmetric configuration as presented in Fig. 4(b). We observe the emergence of robust waves propagating
along the interfaces between 5-fold symmetric domains of distinct topological properties (e.g., I and II) as
shown in the time response simulation of Fig. 5. In particular, the higher order rotational symmetry of
the quasicrystals allows for the design of unusual interfaces, since it provides more directions of angular
symmetry then the periodic cases.

5 Conclusions

The spatial design of phononic crystals and acoustic-elastic metamaterials is based on translational period-
icity, and hence, their wave phenomena, such as the directionality and topological guiding, are restricted to
the crystallographic symmetries (e.g., 2-, 4- and 6-fold). In this work, the wave directionality as well as the
topological valley states were expanded to high-order rotational symmetries, such as 10-fold, by employing
quasiperiodic elastic metamaterial plates. Moreover, it opens new possibilities for applications involving
the unusual wave front directivity and topological circuits with high-order symmetry (e.g., 10-fold), such as
focusing, sensing, guiding and imaging beyond the symmetries provided by the periodic configurations.
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Figure 5: Time response simulation of a 10-fold quasicrystal plate with three topological interfaces, which
were created by intercalating domains with opposite valley states, i.e. γ < 0 and γ > 0. The waves are
guided through the topological interfaces while the bulk is isolated by the gaps.
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