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Abstract
The wave propagation in a 2-D mechanical metamaterial Kirchhoff-Love plate with periodic arrays of
shunted piezo-patches is investigated. This piezoelectric mechanical metamaterial thin plate is capable of
filtering the propagation of flexural waves over a specified range of frequency, called band gaps. The real
and complex band structures are obtained by the improved plane wave expansion (IPWE) and extended
plane wave expansion (EPWE) methods, respectively. The Bragg-type and locally resonant band gaps are
both opened up. The shunt circuits influence significantly the propagating and the evanescent modes. The
results can be used for elastic wave attenuation using 2-D piezoelectric periodic structures.

1 Introduction

Recently, the piezoelectric shunt damping combined with the concept of periodic structures originated the
piezoelectric mechanical metamaterials (PMMs). In terms of wave attenuation, the advantage of using PMMs
is the formation of both Bragg-type and locally resonant band gaps [1]. These forbidden bands are regions of
frequency where there are only evanescent waves [2, 3]. In addition, the 1-D [4, 5] and 2-D [1, 6, 7] PMMs
have been extensively studied by experimental techniques and numerically.

Chen [1] obtained the band structure of 2-D acoustic metamaterials with shunting circuits by using the finite
element (FE) method with COMSOL. He observed an attenuation zone around the band gap location, in
which the wave propagation decayed strongly.

Xiao et al. [7] designed an adaptive hybrid laminate acoustic metamaterial composed of a carbon-fiber-
reinforced polymer and a periodic array of piezoelectric shunting patches attached to the laminate. They
demonstrated by using FE approach that the lightweight adaptive hybrid laminate metamaterial with the
shunting circuits can remarkably suppress wave propagation compared to the un-shunted case. Moreover,
they discussed the effects of the laminate’s parameters as well as the shunting circuits on the band gap’s
location and bandwidth. They also introduced a negative capacitance shunting circuit into the piezoelectric
patches in order to enlarge the band gap width.

In this investigation, the band structures are numerically obtained by the improved plane wave expansion
(IPWE) [8, 2, 3, 9] and extended plane wave expansion (EPWE) [10, 2, 3] methods. First, the cases of open
and short circuits are studied. Next, two types of closed electrical circuits are considered, i.e., resistive and
resonant circuits.
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2 Piezoelectric metamaterial plate modeling

Figure 1 sketches the top (a) and front (b) views of the 2-D PMM unit cell. The piezoelectric patches with
shunting circuits connected in parallel are illustrated in (b) for the cases of resistive (ZSU = R) and resonant
(ZSU = R+ iωL) circuits, where i =

√
−1, ω is the angular frequency, ZSU is the electrical impedance, R

is the resistance and L is the inductance of the electrical circuit. In Fig. 1 (c), it is shown the first irreducible
Brillouin zone (FIBZ) [11] of the 2-D PMM for a square lattice, where the FIBZ high-symmetry points are
Γ (0, 0), X (π/a, 0) and M (π/a, π/a) and a is the lattice parameter.
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Figure 1: Top (a) and front (b) views of the 2-D PMM unit cell. First irreducible Brillouin zone of the 2-D
PMM for a square lattice.

The IPWE, ω(k), is used to compute the propagating modes, whereas the EPWE, k(ω), can be used to obtain
both propagating and evanescent modes of the band structure, where k is the Bloch wave vector (also known
as wave number). It should be highlighted that the IPWE method has higher convergence than the traditional
plane wave expansion (PWE) approach [8]. Furthermore, the band structure computed by IPWE shows a
considerably lower computational cost [9], since it is a semi-analytical approach and it is not necessary to
consider a large number of degrees-of-freedom as with other methods. The IPWE and EPWE formulations
will be derived in a future publication. However, some fundamental issues associated with these approaches
can be found in [12, 13].

The Kirchhoff-Love [14, 15] thin plate theory is used to model the 2-D PMMs with periodic arrays of shunted
piezo-patches with a square cross section area (Fig. 1 (a)). The evanescent modes obtained by the EPWE
are related to the wave attenuation in the unit cell, since it is defined as ℑ{k}a [3]. In this paper, the media
are isotropic and only flexural (i.e., out-of-plane) modes are considered.

3 Simulated examples

The physical parameters [7, 16] of the plate (b) and the piezoelectric patches (p) are listed in Table 1. It
should be pointed out that the plate and piezoelectric patch loss factors are not considered. Moreover, the
dynamic equivalent modulus and Poisson’s ratio of piezo-patches can be obtained by using [7]:

Ep(ω) =
hp[1 + iωZSU (ω)Cε

p ]

hpsE11[1 + iωZSU (ω)Cε
p ]− iωZSU (ω)d231As

, (1)

νp(ω) = −
sE12[1 + iωZSU (ω)Cε

p ]− iωZSU (ω)d231Ash
−1
p

sE11[1 + iωZSU (ω)Cε
p ]− iωZSU (ω)d231Ash

−1
p

. (2)
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Table 1: Geometry and material properties of the plate (b) and piezoelectric patches (PZT-5H) (p).

Geometry/Property Value
Lattice parameter (a) 0.06 m

Piezoelectric patch length (ap) 0.03 m
Plate thickness (hb) 0.0016 m

Piezoelectric patch thickness (hp) 0.0002 m
Mass density (ρb, ρp) 1.6 × 103 kg/m3, 7.5 × 103 kg/m3

Young’s modulus (Eb, Ep(ω)) 181 × 109 N/m2, Eq. 1
Poisson’s ratio (νb, νp(ω)) 0.28, Eq. 2

Compliance coefficient at constant electric field (sE11) 16.5 × 10−12 1/Pa
Compliance coefficient at constant electric field (sE12) -4.78 × 10−12 1/Pa

Piezoelectric strain constant (d31) -2.74 × 10−10 C/N
Dielectric constant (εσ33) 3400ε0

Electromechanical coupling coefficient (k31) 0.35
Electrical capacitance of the piezo at constant strain (Cε

p) 118.87 × 10−9 F

Hereafter, the model assurance criterion (MAC) [17] is used to estimate the correlation among wave mode
shapes for the EPWE. Furthermore, for IPWE and EPWE calculations and comparison, 49 plane waves are
regarded, in order to reduce the computational time (i.e., the Fourier series convergence is not verified) and
the band structure is analyzed only on the ΓX direction, i.e., ϕ̄ = 0.

Figure 2 shows the complex band structure of the 2-D PMM plate for the case of open circuit (ZSU → ∞).
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Figure 2: Complex band structure of the 2-D PMM plate with open circuit (ZSU → ∞) computed by (a)
IPWE (blue circles) and (a− b) EPWE (points) methods.

In Fig. 2 (a), one can note that the IPWE (blue circles) can identify only the propagating modes. The
evanescent modes with complex wave numbers are obtained by the EPWE (points). A good agreement
between the IPWE and EPWE is observed (Fig. 2 (a)). Note that some modes in Fig. 2 (a) cannot be found
by the IPWE, since they are complex. For EPWE calculation, a ∆f = 1 Hz is regarded. The band gap in
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Fig. 2 (a) (blue dashed rectangle) is created only by Bragg scattering along ΓX direction (partial band gap),
since there is no electrical resonance. This Bragg-type band gap is opened up between 2239-2513 Hz and
can be directly observed by the propagating modes from IPWE. The unit cell wave attenuation inside this
band gap can be seen in Fig. 2 (b). Moreover, there are also other regions of wave attenuation in higher
frequencies that are shown in Fig. 2 (b). It should be underlined that the best strategy to identify a complete
band gap is to identify whether all Bloch waves are evanescent within it [12].

Figure 3 shows the complex band structure for the case of short (ZSU = 0) circuit. Two partial band gaps
(Fig. 3 (a)) are created between 1948-2150 Hz and 7823-8127 Hz. A good agreement between the IPWE
and EPWE (Fig. 3 (a)) is observed, similar to the open circuit case (Fig. 2 (a)).
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Figure 3: Complex band structure of the 2-D PMM plate with short circuit (ZSU = 0) computed by (a)
IPWE (blue circles) and (a− b) EPWE (points) methods.

Figure 4 illustrates the complex band structure for the case of resistive (R = 50 Ω) circuit.

This band structure behavior is similar to the short circuit case (Fig. 3), however, the resistor slightly in-
creases the total piezoelectric loss factor (Fig. 4).

It should be underlined that the IPWE cannot be directly used to compute the band structures for the cases
of closed circuit (resistive and resonant circuits), since there are some properties depending on the frequency
(Eqs. 1 and 2). However, an iterative algorithm can be designed to obtain the band gap structure due to the
dependence of elastic constants [18].

Figure 5 presents the complex band structure for the case of resonant circuit (fT = 768.786 Hz), where fT
is the resonance of the electrical circuit. The locally resonant band gap can be observed in Fig. 5 around the
resonant frequency. The resonance is easily identified considering for instance only the first four modes (see
Fig. 6). Moreover, this resonant frequency can be computed by [7]:

fT =
1

2π
√
L(Cε

p − Ch)
, (3)
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where

Ch =
d231As/hp

sE11 −
12(sE11−sE12)

2
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Figure 4: Complex band structure of the 2-D PMM plate with resistive circuit (R = 50 Ω) computed by
EPWE.
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Figure 5: Complex band structure of the 2-D PMM plate with resonant circuit (fT = 768.786 Hz) computed
by EPWE.

−0.5 0 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

ℜ (k)a/2π

F
re

qu
en

cy
 [H

z]

(a)

−0.5 0 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

ℑ (k)a/2π

F
re

q
u

e
n

cy
 [
H

z]

(b)

Figure 6: Complex band structure zoom (only the first four modes) around the locally resonant band gap of
the 2-D PMM plate with a resonant circuit (fT = 768.786 Hz) computed by the EPWE.

4 Conclusions

The complex band structures of a 2-D mechanical metamaterial thin plate with periodic arrays of shunted
piezo-patches are investigated. These band structures computed by IPWE and EPWE approaches show good
agreement. The Bragg-type band gaps are first observed for the open and short circuits. Next, the resistive
and resonant circuits are studied and the locally resonant band gap is opened up for the resonant case. The
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results can be used for elastic wave attenuation using 2-D piezoelectric periodic structures.
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[14] G. Kirchhoff, “Über das gleichgewicht und die bewegung einer elastischen scheibe,” Journal für die
reine and angewandtle Mathematik, vol. 40, pp. 51–88, 1850.

[15] A. E. H. Love, “The small free vibrations and deformation of a thin elastic shell,” Philosophical Trans-
actions of the Royal Society, vol. 179, pp. 491–546, 1888.

[16] J. J. Hollkamp, “Multimodal passive vibration suppression with piezoelectric materials and resonant
shunts,” Journal of Intelligent Material Systems and Structures, vol. 5, no. 49-57, 1994.

[17] J.-M. Mencik, “On the low- and mid-frequency forced response of elastic structures using wave finite
elements with one-dimensional propagation,” Computers and Structures, vol. 88, pp. 674–689, 2010.

[18] Y. P. Zhao and P. J. Wei, “The band gap of 1D viscoelastic phononic crystal,” Computational Materials
Science, vol. 46, no. 3, pp. 603–606, 2009.

PERIODIC STRUCTURES AND METAMATERIALS 3132


