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Abstract
This paper shows that specific additive manufacturing (AM) technology can be used to produce double-
porosity acoustic materials where main pore networks are designed and a useful type of microporosity is
obtained as a side effect of the 3D printing process. Here, the designed main pore network is in the form
of annular pores set around the axis of the cylindrical absorber. In this way, the axial symmetry of the
problem is ensured if only plane wave propagation under normal incidence is considered, which allows for
modelling with purely analytical expressions. Moreover, the outermost annular pore is bounded by the wall
of the impedance tube used to measure the sound absorption of the material, so that experimental tests can
be easily performed. Two different AM technologies and raw materials were used to fabricate axisymmetric
absorbers of the same design, in one case obtaining a material with double porosity, which was confirmed
by the results of multi-scale calculations validated with acoustic measurements.

1 Introduction

Modern AM technologies [1, 2, 3] have become extremely useful for prototyping and development of in-
novative materials, devices and engineering solutions in various fields of technology and science. Recently,
inter-laboratory tests involving various AM technologies, raw materials and 3D printers have confirmed –
albeit under certain conditions – the reproducibility of 3D printed sound absorbers with engineered pore
networks [4]. In fact, in spite of many limitations (e.g. a relatively low resolution), these technologies are
widely used in recent times to develop new acoustic materials [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. However,
with rare exceptions [12], these can be treated as single-porosity solutions.

The aim of this paper is to demonstrate that a specific AM technology can be used to produce engineered
acoustic materials with double porosity that significantly enhances their performance. The main idea is to use
technology that provides a useful type of microporosity in the 3D printed structure. This usually undesirable
side effect can be regarded as an advantage when combined with a suitable design of the main pores or slits
to ensure beneficial high contrast of permeability between the two porosity scales, leading to the pressure
diffusion phenomenon. In this way, an additional and very effective mechanism of acoustic wave energy
dissipation is obtained, which can be engineered by adjusting the design of the main pore network. In this
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work, this approach will be applied to a cylindrical sound absorber [15, 16] in which the main pore network
is in the form of annular slits arranged around its axis and separating the core and the subsequent rings,
which are 3D printed as microporous. Such a simple structure of the absorber can be easily manufactured
and its axial symmetry allows for modelling with purely analytical expressions [15, 16], so that the entire
design can be quickly optimised, in particular to engineer the pressure diffusion effect.

The outline of this paper is as follows. The design and manufacturing of axisymmetric sound absorbers with
annular slits are discussed in Section 2. Section 3 provides all necessary formulae for modelling of such
acoustic materials with single or double porosity. Sound absorption by axisymmetric absorbers is presented
in Section 4, where the results of analytical calculations and numerical simulations are confronted with the
acoustic measurements on 3D printed specimens. The main findings and conclusions are summarised in
Section 5.

2 Design and additive manufacturing of axisymmetric absorbers

Figure 1 presents the design and 3D printed specimen of an axisymmetric absorber with annular slits, for
which all multi-scale calculations can be done analytically [15, 16, 17]. Thanks to the axial symmetry, direct
numerical simulations can also be easily performed using the two-dimensional finite element mesh shown
in Figure 1(b). The absorber is in the form of a cylinder composed of three coaxial parts, viz. an elongated
cylindrical core and two rings, all separated by annular slits, see Figures 1 and 2. Two specimens of the
absorber were manufactured in substantially different AM technologies, viz.:

• Stereolithography (SLA) [2] – using Formlabs Form 3B device and a low-viscosity photopolymer resin
as raw material, see Figure 1(c,d) for sample photos,
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Figure 1: Axisymmetric absorbers with annular slits: (a) the geometry of the absorber inside the impedance
tube, (b) finite element mesh used in numerical simulations, (c) top and (d) bottom view of the absorber
specimen 3D printed from photopolymer resin in SLA technology.
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(a) (b) (c) (d) (e)

Figure 2: Axisymmetric absorber specimen 3D printed from gypsum powder in BJP technology: (a) cylin-
drical core, (b) inner ring, (c) outer ring, (d) bottom and (e) top view of the assembled sample.

• Binder Jetting 3D Printing (BJP) [3] – using 3D Systems ProJet 160 device and gypsum powder as
raw material with butyrolactam as a binder, see Figure 2 for sample photos.

The SLA specimen was 3D printed as a single item, i.e. with all three parts already connected at the bottom
as clearly seen in Figure 1(d), while the three parts of the BJP specimen were 3D printed separately and then
assembled together, see Figure 2, due to the difficulty of removing the powder from the relatively narrow
annular slits. As for the resin used in the SLA technology, its excess was easily removed from the slits due
to its relatively low viscosity.

The main finding of this work – confirmed by the results discussed in Section 4 – is that the acoustic per-
formance of the absorber strongly depends on the AM technology used to produce it. This is because the
cylindrical core Ω1 and two rings of the absorber, i.e. annular subdomains Ω3 and Ω5 (see Figure 1), are
made of solid impervious material in the case of SLA technology, or microporous permeable material in
the case of BJP technology. In each case, the absorber is installed in the impedance tube used for acoustic
testing [18] as shown in the photo in Figure 1(a) for the SLA specimen. The tube radius is Rt = 14.5mm. In
this configuration, there are three annular slits, Ω2, Ω4, and Ω6, saturated with air. The wall of the external
annular slit Ω6 is formed by the internal surface of the metal tube. For practical reasons, the core and the
two rings are connected by three small struts at the bottom of the absorber, although it is implemented dif-
ferently in the SLA and BJP printouts, cf. Figures 1(d) and Figure 2(d). There are also six tiny bumps on the
lateral surface of each absorber – three at the bottom and three in the middle of the height – which ensure the
central positioning of the absorber in the tube. These small struts and bumps are 3D printed, but neglected
in the modelling. Thus, all relevant dimensions of the absorber are defined by six radii rn (n = 1, . . . , 6)
and the height H = 50mm, as shown in Figure 1. Table 1 gives the nominal values of all radii and the
corresponding annular widths from the geometric model used for 3D printing, as well as the actual values
found by caliper measurements on 3D printed parts and microscope examination of annular slits, core and
rings in 3D printed absorbers. The latter values differ slightly for SLA and BJP absorbers, as they depend
on the additive manufacturing technology and the material used to make them. In addition, thorough ex-
amination of the 3D printed specimens confirmed the expected high quality of the SLA sample with very
smooth surfaces and well-mapped shapes, as well as the lesser quality of the BJP sample with rough surfaces
and shape distortions due to loose assembly. The actual dimensions listed in Table 1 were used to calculate

Table 1: Dimensions in axisymmetric absorbers with annular slits: (a) nominal values, (b) actual dimensions
in the SLA absorber, (c) actual dimensions in the BJP absorber.

Radii (mm) Annular widths (mm)
r1 r2 r3 r4 r5 r6 = Rt r2 − r1 r3 − r2 r4 − r3 r5 − r4 r6 − r5

(a) nom. 3 4 10 11 14 14.5 1 6 1 3 0.5
(b) SLA 3.1 4.0 10.1 11.0 14.1 14.5 0.9 6.1 0.9 3.1 0.4
(c) BJP 2.9 4.1 9.9 11.0 14.0 14.5 1.2 5.8 1.1 3.0 0.5
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the relevant macro-parameters during the multi-scale modelling of single- and double-porosity axisymmetric
sound absorbers as discussed below.

3 Modelling based on analytical calculations

The acoustic wave propagation in porous materials with a rigid frame can be described by the classical
Helmholtz equation for time-harmonic acoustics [19] that – in this case – results from the dynamic Darcy’s
law and macroscopic mass balance equation. The latter two equations are themselves derived by the ho-
mogenisation procedure involving the corresponding viscous flow and thermal diffusion problems formu-
lated in the open pore network, and introducing two effective properties: the dynamic viscous permeabil-
ity [20] and effective compressibility. The effective properties are complex-valued and depend on the angular
frequency ω. The second one results from the so-called dynamic thermal permeability [21, 22] (related to
the main pore network), and in the case of materials with double porosity it is also affected by the effective
compressibility of air saturating the micropores, the effect of which can be greatly enhanced by the pressure
diffusion phenomenon, described in modelling by the so-called dynamic pressure diffusion function [23, 24].

It has been demonstrated [24] that the aforementioned dynamic functions for viscous, thermal, and pres-
sure diffusion effects, can be accurately calculated using the well-known scaling functions of the Johnson-
Champoux-Allard-Lafarge-Pride (JCALP) model [19, 20, 21, 22, 25], provided that the relevant macro-
parameters are known. In general, these parameters can be calculated by numerically solving the relevant
boundary value problems (BVPs) formulated in the fluid domain (or microporous domain in the case related
to pressure diffusion) of a periodic representative elementary volume [26, 27, 28, 24]. However, in the case
of axisymmetric designs as the one studied in this work, all of these BVPs degenerate into the ordinary dif-
ferential equation (see Appendix A.1), which can be solved analytically to provide closed formulae given in
Appendix A, as demonstrated in [17] for the single-porosity case and in [15, 16] for the multi-scale absorber.
In fact, all necessary formulae for analytical modelling of single- or double-porosity axisymmetric absorbers
are provided below for the considered design with three annular slits, although a generalization can be readily
made to any number of annular pores, see also Refs. [15, 16, 17].

As shown in Figure 1, the entire main pore network of each absorber consists of three annular slits, i.e.
Ωp = Ω2 ∪Ω4 ∪Ω6. Therefore, the porosity associated with this network is equal to the sum of the porosities
of the individual slits, viz.

ϕp = ϕp2 + ϕp4 + ϕp6 , ϕp2 =
r22 − r21
R2

t
, ϕp4 =

r24 − r23
R2

t
, ϕp6 =

r26 − r25
R2

t
. (1)

As demonstrated, e.g. in [17, 29], the static tortuosities, permeabilities and characteristic lengths of a pore
network with all walls parallel to the direction of flow and wave propagation (as in the absorbers under
consideration) are the same for viscous and thermal effects. Here, the static viscous K0p or thermal Θ0p
permeability is the sum of permeabilities calculated for each annular slit, viz.

K0p = Θ0p = K0p2 +K0p4 +K0p6 , (2)

where (see Appendix A.3)

K0p2 = Θ0p2 =
ϕp2 r

2
2

8

(
1 + (r1/r2)

2 +
1− (r1/r2)

2

ln(r1/r2)

)
, (3)

K0p4 = Θ0p4 =
ϕp4 r

2
4

8

(
1 + (r3/r4)

2 +
1− (r3/r4)

2

ln(r3/r4)

)
, (4)

K0p6 = Θ0p6 =
ϕp6 r

2
6

8

(
1 + (r5/r6)

2 +
1− (r5/r6)

2

ln(r5/r6)

)
. (5)

The viscous and thermal characteristic lengths determined separately for each slit are equal to the width of
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the respective slit, viz.

Λvp2 = Λtp2 = r2 − r1 , Λvp4 = Λtp4 = r4 − r3 , Λvp6 = Λtp6 = r6 − r5 . (6)

However, when determined for the entire network of slits, they are both equal to the half of the hydraulic
diameter of that pore network, which means twice the ratio of the total cross sectional area of the annular
pores to the corresponding total circumference, i.e.

Λvp = Λtp =
r26 − r25 + r24 − r23 + r22 − r21
r6 + r5 + r4 + r3 + r2 + r1

. (7)

The slit walls are all parallel to the wave propagation direction so their network is not tortuous and the
(kinematic) tortuosity α∞p = 1, because the end corrections can be neglected. Since the slit widths are
comparable, the static (viscous and thermal) tortuosities calculated for each annular slit Ωn, with n = 2, 4, 6,
using the formula for α0 derived in Appendix A.3, are almost identical and α0vpn = α0tpn = 1.20. However,
the static tortuosity α0vp = α0tp calculated for all the slits taken together is larger than this value (see Table 2).

Table 2: Macro-parameters and characteristic frequencies for viscous and thermal effects in the annular
slits computed assuming: (a) nominal dimensions of the absorber design, (b) actual dimensions of the SLA
absorber, (c) actual dimensions of the BJP absorber.

ϕp K0p = Θ0p Λvp = Λtp α0vp = α0tp α∞p fvp ftp

% 10−8 m2 mm – – Hz Hz
(a) nom. 20.10 1.252 0.748 1.482 1 40.1 56.7
(b) SLA 17.51 0.888 0.648 1.471 1 49.3 69.7
(c) BJP 21.71 1.724 0.809 1.507 1 31.3 44.2

Table 2 lists the values of all macro-parameters associated with the network of annular slits, calculated for the
original design dimensions as well as the actual dimensions of the slits found in both 3D printed absorbers
(see Table 1). These parameters, together with the formulae for shape factors

Mvp = Mtp =
8Θ0p

ϕp Λ2
tp
, Pvp = Ptp =

Mtp

4
(
α0tp − 1

) , (8)

allow to calculate the corresponding dynamic viscous and thermal permeabilities, Kp(ω) and Θp(ω), using
the following scaling functions [19, 20, 21, 22, 25]

Kp(ω) = K0p

(
iω
ωvp

+ 1− Pvp +

√
P2

vp +
Mvp

2

iω
ωvp

)−1

, ωvp =
ϕp ν

K0p α∞p
, (9)

Θp(ω) = Θ0p

(
iω
ωtp

+ 1− Ptp +

√
P2

tp +
Mtp

2

iω
ωtp

)−1

, ωtp =
ϕp νt

Θ0p
, (10)

where the characteristic (angular) frequencies for viscous ωvp and thermal ωtp effects depend on the kinematic
viscosity ν and thermal diffusivity νt of air, respectively. The imaginary parts of Kp and Θp have extremal
values around their characteristic frequencies, i.e. close to fvp =

ωvp
2π and ftp =

ωtp
2π , respectively. The values

of these frequencies are listed in Table 2. They were calculated for the three variants of absorber dimensions
shown in Table 1, and the air properties ν = 1.56 · 10−5 m2/s and νt = 2.21 · 10−5 m2/s determined during
the experimental testing at ambient mean pressure P0 = 99650Pa and temperature of 23.1 ◦C. The effective
compressibility associated with the entire network of annular slits is calculated as

Cp(ω) =
ϕp

P0

(
1− γ − 1

γ

Θp(ω)

Θ0p

iω
ωtp

)
, (11)

where γ = 1.4 is the adiabatic index for air. The effective properties of Cp and Kp are sufficient to describe
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the acoustics of rigid-frame media with single porosity, e.g. the absorber 3D printed from resin in SLA
technology, shown in Figure 1(c,d).

Notice that the scaling functions (9) and (10) of the JCALP model are used to approximate Kp(ω) and Θp(ω)
at once for the for entire network of slits. This is a general approach suitable for any pore network. It was
applied here for the sake of simplicity and because it gives in fact very accurate results. However, the slits
are separated and it is possible and formally more correct to apply the JCALP approximations directly to
each of them. Therefore, the scaling functions of the form (9) and (10) can be used to calculate the dynamic
viscous Kpn(ω) and thermal Θpn(ω) permeabilities, respectively, separately for each of the three slits Ωn,
with n = 2, 4, 6. This would require the calculation of the corresponding shape factors using formulae
similar to equations (8), as well as characteristic frequencies for each slit. In particular, instead of ωvp
and ωtp there are in fact three viscous characteristic frequencies ωvpn (for which ωvp is only some average
value) and three thermal ones ωtpn (for which ωtp is only some average value), respectively. Similarly, the
contributing effective compressibilities Cpn(ω) are determined separately for each slit Ωn, with n = 2, 4, 6,
using formulae analogous to equation (11) with the corresponding ϕpn, ωtpn, Θ0pn, and Θpn(ω). Finally, the
dynamic viscous permeability and effective compressibility for the entire network of slits are calculated as
the sum of the contributions determined for each slit, viz. Kp(ω) = Kp2(ω)+Kp4(ω)+Kp6(ω) and Cp(ω) =
Cp2(ω) + Cp4(ω) + Cp6(ω), respectively. It was verified that the difference between the results obtained with
the two approaches discussed above is utterly insignificant, especially as the slits are of comparable width
and their respective characteristic frequencies are of similar order.

The parts of the absorber manufactured in BJP technology (see Figure 2) are microporous. The microporosity
was found to be open and, moreover, to provide a high contrast of permeability with the designed network
of annular slits, ultimately resulting in a double-porosity material with a strong pressure diffusion effect.
This phenomenon strongly modifies the effective acoustic compressibility Cdb of the double-porosity BJP
absorber compared to that (i.e. Cp) determined for the single-porosity SLA specimen. On the other hand,
due to the high permeability contrast between the slits and micropores, the dynamic viscous permeabilities
can be assumed identical for both absorbers, i.e. Kdb ≈ Kp. The macro-parameters related to the pressure
diffusion in the double-porosity BJP absorber are calculated here separately for the cylindrical core Ω1, and
each of the two rings, i.e. Ω3 and Ω5, see Figure 1(a). Thus, the relevant volume fractions are

ϕd1 =
r21
R2

t
, ϕd3 =

r23 − r22
R2

t
, ϕd5 =

r25 − r24
R2

t
, (12)

while the static pressure diffusions are calculated as follows (see Appendix A)

B0d1 =
ϕd1 r

2
1

8
, (13)

B0d3 =
ϕd3 r

2
3

8

(
1 + (r2/r3)

2 +
1− (r2/r3)

2

ln(r2/r3)

)
, (14)

B0d5 =
ϕd5 r

2
5

8

(
1 + (r4/r5)

2 +
1− (r4/r5)

2

ln(r4/r5)

)
. (15)

The associated characteristic lengths are simply equal to the core radius and respective annular widths, viz.

Λd1 = r1 , Λd3 = r3 − r2 , Λd5 = r5 − r4 , (16)

while the values of static tortuosities are determined as (see Appendix A): α0d1 = 4
3 , α0d3 = 1.206, and

α0d5 = 1.200. The macro-parameters associated with pressure diffusion and calculated separately for each
microporous subdomain of the BJP absorber are listed in Table 3, where the corresponding values calculated
for the original, i.e. uncorrected, design are given in parentheses (except for α0dn, which are unchanged).
Each of the three sets of these macro-parameters (i.e. successively for Ωn with n = 1, 3, and 5) is used to
calculate the corresponding shape factors

Mdn =
8B0dn

ϕdn Λ2
dn

, Pdn =
Mdn

4
(
α0dn − 1

) . (17)
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Table 3: Macro-parameters and characteristic frequencies for pressure diffusion in the axisymmetric BJP
absorber with double porosity (original design values are given in parentheses).

ϕdn B0dn Λdn α0dn fdn

Domain n % 10−8 m2 mm – Hz
Ω1 1 4.00 (4.28) 4.205 (4.816) 2.9 (3) 1.333 1105 (1033)
Ω3 3 38.62 (39.95) 109.6 (121.5) 5.8 (6) 1.206 409 (382)
Ω5 5 35.67 (35.67) 26.78 (26.78) 3.0 (3) 1.200 1548 (1548)

and characteristic frequencies ωdn, see equation (18) below. Now, the scaling function, analogous to the one
known from the JCALP model [19, 20, 21, 22, 25], can be used to determine the corresponding dynamic
pressure diffusion functions (for n = 1, 3, 5) as follows

Bdn(ω) = B0dn

(
iω
ωdn

+ 1− Pdn +

√
P2

dn +
Mdn

2

iω
ωdn

)−1

, ωdn =
ϕdnD0m

B0dn
, (18)

where the (angular) characteristic frequencies ωdn depend on the static pressure diffusivity

D0m =
K0m

η C0m
=

P0K0m

η ϕm
(19)

of the microporous material [24]. The static pressure diffusivity (19) combines the properties of the mi-
croporous network with those of the saturating fluid (air), viz.: the static viscous permeability K0m of the
microporous material and its static effective compressibility C0m = ϕm

/
P0 (which is the ratio of the micro-

porosity ϕm to the ambient mean pressure P0) with the dynamic viscosity η of air. The air viscosity was
assumed as η = 1.83 ·10−5 Pa·s in the ambient conditions (23.1 ◦C, P0 = 99650Pa) found during the acous-
tic testing of absorbers in the impedance tube, while the inherent properties of the microporous material, i.e.
ϕm = 42.6% and K0m = 0.57 · 10−12 m2, were measured directly on specially prepared disc-shaped sam-
ples. The microporosity value ϕm = 43% was confirmed by inverse identification based on sound absorption
measurements of the BJP specimen, however, at the same time the viscous permeability was identified as
K0m = 2 · 10−12 m2 (see the next section).

The three characteristic frequencies fdn = ωdn
2π (n = 1, 3, 5) for pressure diffusion occurring in the micro-

porous core (n = 1), inner ring (n = 3) and outer ring (n = 5) of the BJP absorber are given in Table 3.
The imaginary parts of Bdn reach extreme values around the respective characteristic frequency fdn, which
usually provides a strong pressure diffusion effect over a wide range around this frequency.

In fact, an additional and very effective mechanism for dissipating the energy of acoustic waves by pressure
diffusion is due to the phase shift between the average pressure in the micropores and that in the main
pores [24] (in the case under study, annular slits). Therefore, the ratio between these two local pressures plays
an important role in modelling. For the material under consideration, three complex-valued functions Fdn(ω)
(n = 1, 3, 5), describing this ratio are calculated as

Fdn(ω) = 1− Bdn(ω)

B0dn

iω
ωdn

, (20)

i.e. one function is computed for each microporous subdomain: Ω1, Ω3, and Ω5. Their real and imaginary
parts are shown in Figure 3. From these graphs, it can be expected that the pressure diffusion is significant,
since the functions are substantially complex-valued over wide frequency ranges. The extrema of their imag-
inary parts are located close to their respective characteristic frequencies fdn. Only at very low frequencies
below 100Hz, where Fdn ≈ 1, the pressure diffusion effect is weak or negligible.

The core and both rings of the BJP absorber are made of the same microporous material characterised by
the effective compressibility Cm(ω). Therefore, the dynamic effective compressibility Cdb(ω) of the ho-
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mogenised medium acoustically equivalent to the double-porosity absorber is calculated as

Cdb(ω) = Cp(ω) + Cm(ω)
(
ϕd1Fd1(ω) + ϕd3Fd3(ω) + ϕd5Fd5(ω)

)
. (21)

When the pressure diffusion effect is ignored (or very weak), the dynamic effective compressibility (21)
reduces to Cpm(ω) = Cp(ω) + ϕd Cm(ω) with ϕd = ϕd1 + ϕd3 + ϕd5 = 1− ϕp.
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Figure 3: Real and imaginary parts of the pressure ratio functions determined for the microporous core, inner
ring, and outer ring of the BJP absorber.
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Figure 4: Normalised effective compressibilities determined for: (a) the BJP absorber with double porosity,
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The real and imaginary parts of the dynamic effective compressibility Cdb (normalised by air compressibil-
ity 1/P0) determined for the BJP absorber are plotted in Figure 4. It should be observed that the extreme
values of the imaginary part form a plateau over a wide frequency range around the three characteristic fre-
quencies fdn (n = 1, 3, 5) related to pressure diffusion occurring in three microporous subdomains. This
accounts for a significant increase in the absorption of acoustic wave energy and can be fine tuned by opti-
mising the size of the microporous subdomains. To show the significance of the pressure diffusion effect,
the CdbP0 curves are compared with: (i) the normalised effective compressibility CpmP0 calculated for the
case where pressure diffusion is ignored, (ii) the normalised effective compressibility CpP0 calculated for
the single-porosity material with annular slits, and (iii) the normalised compressibility CmP0 of the micro-
porous material obtained from gypsum powder. The effective dynamic compressibility for the microporous
material Cm was determined as for a granular medium with known porosity ϕm and grain size (typical for
the gypsum powder used in 3D printing), but in practice it can be replaced with its static counterpart, i.e.
Cm(ω) ≈ Cm(0) ≡ C0m = ϕm

/
P0 (see in Figure 4 that Re Cm is constant and Im Cm

/
Re Cm is negligibly

small at frequencies below 10 kHz).

4 Sound absorption by axisymmetric absorbers

The dynamic permeability and effective compressibility derived in the previous section for both axisymmet-
ric absorbers permit to calculate their effective acoustic properties, i.e. the effective density ϱe and speed of
sound ce, as follows

ϱe(ω) =
η

iωKe(ω)
, ce(ω) =

√
iωKe(ω)

η Ce(ω)
. (22)

In these formulae, Ke = Kp and Ce = Cp for the single-porosity SLA absorber, while Ke = Kdb ≈ Kp and
Ce = Cdb for the BJP absorber with double porosity. The dynamic viscosity of air η = 1.83 · 10−5 Pa·s was
determined for the ambient conditions found during the acoustic testing.

The effective properties (22) can be used to determine the acoustic wave propagation in the homogenised
domain of the absorber by solving the corresponding Helmholtz problem. This can be done analytically
for plane wave propagation with normal incidence to the surface of the cylindrical absorber. From this
solution, the surface acoustic impedances Zs of the studied absorbers with a height of H = 50mm are
calculated [19] as

Zs(ω) = −i ϱe(ω) ce(ω) cot
(
ωH/ce(ω)

)
. (23)

Finally, the sound absorption coefficient at normal incidence A is determined from the acoustic reflection
coefficient R [19] as follows

A(ω) = 1−
∣∣R(ω)

∣∣2, R(ω) =
Zs(ω)− Z0

Zs(ω) + Z0
, (24)

where Z0 is the characteristic impedance of air. In the ambient conditions found during the acoustic testing
Z0 = 403.6Pa·s/m.

Figure 5 compares sound absorption at normal incidence by the single-porosity SLA absorber and double-
porosity BJP absorber, predicted from analytical calculations and measured in the impedance tube [18]. The
experimental result for SLA absorber agrees very well with the corresponding analytical prediction (cf. the
red curve marked with squares with the orange dotted curve), which proves that the single-porosity model
can be used for absorbers 3D printed from photopolymer resins in the SLA technology. In this case, another
absorption curve calculated for the uncorrected design with the original annular widths (see the first row
of Table 1) is also presented as grey dotted curve in Figure 5, showing only a slight difference at the first
absorption peak. Much larger discrepancies between the measurement and the prediction are observed in the
case of the absorber with double porosity, especially at frequencies above 2 kHz, cf. the red curve marked
with circles with the thick blue curve specified in the graph legend as (BJP) case (a). To some extent, these
discrepancies can be attributed to imperfections in the 3D printed absorber, in particular, surface roughness
and shape distortions clearly present in the assembled BJP specimen. It has been found, however, that these
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Figure 5: Sound absorption for the 3D printed absorbers with single (SLA) and double (BJP) porosity: mea-
surements vs. predictions. The analytical calculations for the BJP absorber were performed for: (a) directly
measured K0m = 0.57 · 10−12 m2, and (b) inversely identified K0m = 2 · 10−12 m2.

rather large discrepancies may also result from the incorrectly assumed permeability of the microporous
parts of the absorber. Recall that the assumed value K0m = 0.57 · 10−12 m2 was measured for disc-shaped
samples several times thicker than the width of the thickest ring of the absorber. Thicker samples may contain
inhomogeneities that reduce permeability, although further research is needed to confirm this. Meanwhile,
the value of K0m = 2 · 10−12 m2 found through inverse identification allowed for a very close matching of
the measured and calculated results, cf. the red curve marked with circles with the light blue dashed curve
specified in the graph legend as (BJP) case (b). At the same time, the identified microporosity ϕm = 43%
turned out to be practically the same as the value measured directly. Thus, for acoustic absorbers made in
the BJP technology using the suggested 3D printer and a coarse-grained gypsum powder as raw material,
the applied modelling which takes into account the double porosity with high contrast of permeability is
necessary and at the same time sufficient for correct predictions.

Both absorbers have almost identical networks of annular slits, but their performance differs significantly
due to pressure diffusion in the microporous skeleton of the BJP absorber, for which the absorption is almost
perfect at its first peak. Moreover, this peak is shifted to a lower frequency around 1 or 1.1 kHz, compared
to 1.7 kHz where the first absorption peak of the single-porosity absorber appears. To demonstrate that the
increase in absorption is virtually solely due to the effect of double porosity with pressure diffusion, the
graph in Figure 5 also presents the extremely poor absorption calculated for a microporous layer with the
same thickness H = 50mm as the height of the axisymmetric absorbers.

Figure 5 also shows the results of direct numerical simulation (DNS) carried out for the double-porosity
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absorber using the finite element (FE) method. FE mesh depicted in Figure 1(b) has been used for this
purpose. The mesh is two-dimensional due to the axial symmetry, and it consists of two material subdo-
mains marked in light blue and orange, respectively; they are: (i) air in the slits and in the top 15mm
layer adjacent to the absorber, and (ii) the lossy acoustic fluid equivalent to the microporous material of the
gypsum skeleton. The later is characterised by the effective density and speed of sound calculated using
equations (22) with Ke = Km and Ce = Cm, where the dynamic viscous permeability Km and effective com-
pressibility Cm of the microporous material can be in practice approximated by their static counterparts, viz.
Km(ω) ≈ Km(0) ≡ K0m and Cm(ω) ≈ Cm(0) ≡ C0m = ϕm/P0. The Helmholtz problem for the acoustic
pressure variable is solved in each subdomain with the boundary conditions as shown in Figure 1(b), viz.:
the axial symmetry at the axis, the rigid wall (i.e. homogeneous Neumann boundary condition) at the bottom
and right edges to simulate hard backing and tube walls, and the pressure boundary condition (i.e. Dirichlet
condition imposing acoustic pressure of 1Pa) at the top edge to simulate the effect of incident plane acoustic
wave. Now, instead of using equation (23), the numerical surface acoustic impedance Zs is found at the top
boundary (where the wave propagation is lossless) as the ratio of the sound pressure to the normal velocity on
that boundary (averaged over the surface, though usually constant, since the boundary is above the absorber
where the waves are plane). The sound absorption is again determined using formulae (24) and plotted in
Figure 5 with the purple dash-dotted line. This absorption curve is consistent with the corresponding analyt-
ical prediction (solid blue line). Discrepancies can be attributed to the fact that the air in the slits is modelled
in the DNS as a lossless, inviscid fluid. To illustrate the complex pressure distribution in double-porosity me-
dia, the real parts of the acoustic pressure distribution in the BJP absorber found by FE analyses at 1.1 kHz
and 4.2 kHz are shown above the graph in Figure 5. The phase shift between the pressure in the slits and
that in the microporous skeleton, responsible for the increased dissipation of the energy of acoustic waves,
is clearly visible.

5 Conclusions

• Double-porosity acoustic absorbers can be easily prototyped by 3D printing structures with designed
annular pores – or more complex pore networks – in BJP technology from coarse-grained gypsum
powders, using the appropriate amount of binder and other process parameters that result in open
microporosity.

• A beneficial high contrast of the permeability between the microporous skeleton, 3D printed in this
way, and the main network of designed, (e.g. annular) pores can be easily obtained. As a result,
the pressure diffusion effect takes place, which provides an additional mechanism for dissipating the
energy of acoustic waves, and thus significantly changes the nature of the sound absorption curves by
shifting their peaks to lower frequencies and improving the overall absorption between them.

• Pressure diffusion effect is easily fine-tuned in axisymmetric absorbers by optimising the number and
size of the microporous core and rings and the annular slits separating them.

• All this has been confirmed by comparisons of the results of acoustical measurements performed on
3D printed specimens with single and double porosity with the corresponding predictions analytically
calculated for the designed axisymmetric absorbers, and verified with direct numerical simulations.

• The discrepancies between the modelling predictions and the experimental results can be attributed to
imperfections caused by the manufacturing process, in particular to the surface roughness and shape
distortions of the designed annular pores. Another reason may be the uncertainty and inaccuracy in
determining the permeability of the microporous structure 3D printed in the BJP technology due to
possible inhomogeneities and/or dependence on thickness, which however, requires further research.
In particular, the reproducibility of the 3D printed samples with double porosity should be investigated
for different powder batches, designed thicknesses, etc.

CHARACTERISATION, DESIGN AND OPTIMISATION OF ACOUSTIC MATERIALS 472



Acknowledgements
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Appendix

A Axisymmetric calculations

A.1 Poisson’s equation

It can be demonstrated [17, 29] that for porous media with channels or slits of arbitrary but constant cross-
sections and parallel to the flow direction, the Stokes problem degenerates into the Poisson equation. Con-
sequently, the static viscous permeability is equal to the thermal permeability, i.e. K0 = Θ0, and the static
viscous tortuosity is the same as the thermal one, i.e. α0v = α0t. Moreover, such media are, by definition,
not tortuous, i.e. with (kinematic) tortuosity α∞ = 1. Their viscous and thermal characteristic lengths are
equal to each other and 2Λv = 2Λt is the well-known hydraulic diameter calculated as four times the ratio of
the total area of the cross-sections of the slits or channels to their total circumference. Thus, only the Poisson
equation has to be solved on the fluid domain to determine the complete set of macro-parameters required
by the scaling function. For double-porosity media, a similar Poisson equation must also be solved on the
domain of microporous skeleton.

In the axial symmetry case, the only independent variable is the distance from the axisymmetric axis, defined
by the radius r, and the Poisson equation becomes an ordinary differential equation of the second-order, viz.

d2θ(r)

dr2
+

1

r

dθ(r)

dr
= −1 , (25)

for which the general solution is

θ(r) = c1 + c2 ln(r/R)− r2

4
(26)

where c1, c2 are integration constants and R > 0 is an arbitrarily chosen radius (e.g. the domain boundary
radius is a very convenient choice for R when taking into account the boundary conditions). Particular
solutions for circular and annular domains are given in Appendices A.2 and A.3.

As mentioned above, the respective static tortuosities, characteristic lengths, and static permeabilities are
identical for viscous and thermal effects, i.e. α0v = α0t = α0, Λv = Λt = Λ, and K0 = Θ0 = Π0, where α0,
Λ, and Π0 can be calculated from the analytical formulae derived below for the case of circular and annular
domains. Similarly, the static tortuosities, characteristic lengths, and static “permeability” related to pressure
diffusion are computed from the same formulae as for the thermal diffusion, i.e. α0d = α0, Λd = Λ, and
D0 = Π0, but for the respective microporous domains of circular or annular shapes.

A.2 Circular domain

Consider the Poisson problem (25) on an axisymmetric circular domain ΩC = {r : 0 ≤ r ≤ R} with
radius R. Assuming that the solution (26) has to be finite, in particular in the centre of domain, i.e. |θ(0)| <
∞, and also satisfies homogeneous Dirichlet condition on the boundary, i.e. θ(R) = 0, the following result
is obtained

θ(r) =
R2 − r2

4
=

R2

4

(
1− (r/R)2

)
. (27)

The averaging of θ(r) and θ2(r) over the circular domain ΩC yields, respectively,

〈
θ(r)

〉
ΩC

=
2

R2

R∫

0

θ(r)rdr =
R2

8
,

〈
θ2(r)

〉
ΩC

=
2

R2

R∫

0

θ2(r)rdr =
R4

48
. (28)
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Let ϕC be the volume fraction of the circular domain ΩC. The static permeability, characteristic length (i.e.
hydraulic radius), and static tortuosity for this domain are

Π0 = ϕC

〈
θ(r)

〉
ΩC

=
ϕCR

2

8
, Λ = R , α0 =

〈
θ2(r)

〉
ΩC〈

θ(r)
〉2
ΩC

=
4

3
. (29)

A.3 Annular domain

Consider the Poisson problem (25) on an axisymmetric annular domain ΩA = {r : 0 < R0 ≤ r ≤ R} with
inner boundary radius R0 and outer boundary radius R, and homogeneous Dirichlet boundary conditions
applied on both boundaries, i.e. θ(R0) = 0 and θ(R) = 0. The solution to such a boundary value problem is

θ(r) =
R2 − r2

4
− R2 −R2

0

4 ln(R0/R)
ln(r/R) =

R2

4

(
1− (r/R)2 − 1− ξ2

ln ξ
ln(r/R)

)
, (30)

where ξ = (R0/R). The averaging of θ(r) and θ2(r) over the annular domain ΩA yields, respectively,

〈
θ(r)

〉
ΩA

=
2

R2 −R2
0

R∫

R0

θ(r)rdr =
R2

8

(
1 + ξ2 +

1− ξ2

ln ξ

)
,

〈
θ2(r)

〉
ΩA

=
2

R2 −R2
0

R∫

R0

θ2(r)rdr =
R4

48

(
1 + ξ2 + ξ4 +

9(1−ξ4)
4 ln ξ +

3(1−ξ2)
2

2 ln2 ξ

)
.

(31)

Let ϕA be the volume fraction of the annular domain ΩA. The static permeability, characteristic length (i.e.
hydraulic radius), and static tortuosity for this domain are

Π0 = ϕA

〈
θ(r)

〉
ΩA

=
ϕAR

2

8

(
1 + ξ2 +

1− ξ2

ln ξ

)
, Λ = R−R0 = R (1− ξ) ,

α0 =

〈
θ2(r)

〉
ΩA〈

θ(r)
〉2
ΩA

=
4

3
·
1 + ξ2 + ξ4 +

9(1−ξ4)
4 ln ξ +

3(1−ξ2)
2

2 ln2 ξ(
1 + ξ2 + 1−ξ2

ln ξ

)2 .

(32)

Note that for ξ → 0 the above solution and formulae reduce to the corresponding equations derived in
Appendix A.2 for the circular domain.
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