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Abstract
In this paper, an analytical model characterizing the reflected and transmitted fields of acoustic periodic
structures is derived with an emphasis on phase gradient metamaterials. The model is based on a Fourier
decomposition of pressure fields and connecting the incidence and the transmission sides with transfer ad-
mittance matrices. By applying pressure and velocity continuity conditions on the top and bottom surfaces of
the material, the corresponding coefficient of each Fourier component of pressure fields can be determined
with known admittance matrices. As a result, the model is capable of predicting reflection, transmission and
absorption coefficients of phase gradient metamaterials under a given plane wave incidence. As a validation,
several cases are studied using this model and compared with numerical and/or analytical predictions where
a good match is found. Lastly, the limitation of the model is discussed.

1 Introduction

Acoustic periodic materials, metamaterials in particular, can be used to achieve high acoustic absorption.
Regardless of the specific realizations [1–4], implementations are mainly based on minimal unit cell(s), i.e.,
the whole design being an infinite repetition of one or more unit cells. Given the potential of metamaterials
in the field of achieving high absorption and the fact that most of them are periodic repetitions, it is of great
significance to be able to predict the reflected and the transmitted fields of such a structure under plane
wave incidence. The reason to study under plane wave incidence is that more complex incidence fields can
be decomposed into several plane wave fields as long as the system is linear. Such a model enables one
to obtain useful information (including reflection and transmission coefficients under a specific incidence)
about the design itself.

In case the material is locally reacting, Mechel [5] proposed to use a spatial Fourier decomposition to predict
the reflected pressure field of periodic materials that have a rigid backing. By decomposing the scattered
pressure field and the surface admittance into Fourier components and applying continuity conditions at the
surface of the material, each reflection component coefficient can be determined. Arguably the model is also
applicable to structures without a rigid backing as long as the surface admittance is known, but it can only
be used to predict the reflected field, not the transmitted field. More recent works [6–8] also focus on the
application of Mechel’s model to achieve high acoustic absorption but also they don’t consider transmission
problems.

In this paper, an extension of Mechel’s model is derived to predict both the reflected and the transmitted fields
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of periodic locally reacting materials. Instead of decomposing the surface admittance on the incidence side,
each element of the admittance matrix which connects both sides of the material is decomposed into Fourier
series. The transmitted field is also decomposed into spatial harmonics and continuity boundary conditions
are also applied to both surfaces of the material. The resulting system of equations is solved using a similar
approach as in [5], for the Fourier coefficients of both the reflected and the transmitted fields.

The remainder of the paper is outlined as follow. Section 2 documents the derivation of the model based
on the Fourier decomposition of the pressure fields and the admittance matrices. Several validations cases
are presented in section 3 ranging from a simple homogeneous layer with rigid separations to a so-called
periodic phase gradient material where the material is not homogeneous. Next, the limitations of the current
model are discussed in section 4. Lastly, the conclusions are summarized in section 5.

2 The Fourier decomposition model

The model described in this section uses the admittance matrix to connect both sides of the material. The
admittance matrix relies on the assumption that the material it characterizes is locally reacting, i.e., waves
only propagate in the direction normal to the interface inside the material. As a result, the pressure and
particle velocity at different points along the interface are only coupled with their top/bottom counterpart
points through admittance relations and not with any other points on the interfaces.

Considering a periodic one-dimensional structure with finite thickness which extends infinitely along the
x-direction as shown in Figure 1, the incident pressure field Pi can be expressed in frequency domain as:

Pi = 1 [Pa] · e−jkixxejkiyy1 . (1)

Figure 1: Schematic representation of a periodic material of infinite extent under plane wave incidence. A
complete period (in the center, blue) is visualized. Each arrow in the cluster of arrows represents a certain
mode in the Fourier decomposition of Pr and Pt which is equivalent to a propagating or evanescent plane
wave.

Here the harmonic time dependence ejωt is assumed, but omitted for clarity. The variables kix and kiy are
wavenumbers in the x and y-direction, which can be defined as:

kix = k0 sin (θ) , kiy = k0 cos (θ) , (2)

where k0 is the free-field wavenumber in air and θ is the angle of incidence as defined in Figure 1.

The reflected and transmitted pressure fields Pr and Pt can be expressed as Fourier series due to their periodic
nature:

Pr =
∞∑

m=−∞
ar,me−jkx,mxe−jky,my1 , Pt =

∞∑

m=−∞
at,me−jkx,mxejky,my2 . (3)

Each Fourier component can be regarded as either a propagating or an evanescent wave depending if its
wavenumber in the y-direction has an imaginary component. Consequently, ar,m and at,m are the mth
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order reflection and transmission coefficients, denoting the pressure amplitude of the mth order reflected or
transmitted spatial harmonic under an unitary incidence. Based on Bloch’s theorem, the wavenumbers in the
x and y-directions for the mth order reflection and transmission are defined as [9]:

kx,m = kix +
2πm

d
, ky,m = Re

(√
k20 − (kx,m)2

)
− j · Im

(√
k20 − (kx,m)2

)
. (4)

It should be noted that the imaginary part of ky,m is negative which ensures the corresponding components
to be evanescent in case ky is a complex number according to the definitions in equation (3).

The y-component of the incident, scattered and the transmitted velocity fields viy, vry and vty can be calcu-
lated from the derivative of their pressure counterparts [10]:

viy = − kiy
ωρ0

e−jkixxejkiyy1 , (5)

vry =
1

ωρ0

∞∑

m=−∞
ar,mky,me−jkx,mxe−jky,my1 , (6)

vty = − 1

ωρ0

∞∑

m=−∞
at,mky,me−jkx,mxejky,my2 , (7)

where ρ0 is the air density and ω is the angular frequency.

Based on equation (1) to (7), the pressure and velocity fields on both sides of the material can be expressed
as:

P1 (x, y1) = Pi + Pr = 1 [Pa] e−jkixxejkiyy1 +
∞∑

m=−∞
ar,me−jkx,mxe−jky,my1 , (8)

P2 (x, y2) = Pt =
∞∑

m=−∞
at,me−jkx,mxejky,my2 , (9)

v1y (x, y1) = viy + vry = − kiy
ωρ0

e−jkixxejkiyy1 +
1

ωρ0

∞∑

m=−∞
ar,mky,me−jkx,mxe−jky,my1 , (10)

v2y (x, y2) = vty = − 1

ωρ0

∞∑

m=−∞
at,mky,me−jkx,mxejky,my2 . (11)

The admittance matrix Y connects two sides of a locally reacting material in terms of pressure and velocity,
which can be expressed as:

v1y (x, 0) = y11P1 (x, 0) + y12P2 (x, 0) , (12)
v2y (x, 0) = y21P1 (x, 0) + y22P2 (x, 0) , (13)

where the admittance Y is expressed as:

Y =

[
y11 y12
y21 y22

]
. (14)

For periodic structures, each element of Y can be decomposed into a Fourier series:

y11 (x) =

∞∑

n=−∞
ane

−j 2πn
d

x, y12 (x) =

∞∑

n=−∞
bne

−j 2πn
d

x,

y21 (x) =
∞∑

n=−∞
cne

−j 2πn
d

x, y22 (x) =
∞∑

n=−∞
dne

−j 2πn
d

x,

(15)
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where n is an integer. The coefficients of the Fourier series can be computed from the known transfer
admittance coefficients:

an =
1

d

∫ d

0
y11 (x) e

j 2πn
d

xdx, bn =
1

d

∫ d

0
y12 (x) e

j 2πn
d

xdx,

cn =
1

d

∫ d

0
y21 (x) e

j 2πn
d

xdx, dn =
1

d

∫ d

0
y22 (x) e

j 2πn
d

xdx.

(16)

Substituting equations (8) - (11) and (15) into equations (12) and (13) leads to:

∞∑

m=−∞

∞∑

n=−∞
anar,me−j

2π(m+n)
d

x −
∞∑

m=−∞

ky,m
ωρ0

ar,me−j 2πm
d

x +
∞∑

m=−∞

∞∑

n=−∞
bnat,me−j

2π(m+n)
d

x

= − kiy
ωρ0

−
∞∑

n=−∞
ane

−j 2πn
d

x,

(17)

∞∑

m=−∞

∞∑

n=−∞
cnar,me−j

2π(m+n)
d

x +
∞∑

m=−∞

ky,m
ωρ0

at,me−j 2πm
d

x +
∞∑

m=−∞

∞∑

n=−∞
dnat,me−j

2π(m+n)
d

x

= −
∞∑

n=−∞
cne

−j 2πn
d

x.

(18)

Due to orthogonality, equation (17) and (18) can be converted into two equations per mode. The decoupling
is achieved by premultiplying both sides of the two equations by ej

2πo
d

x then the product is integrated over x
between 0 and d. For the oth mode, this leads to:

∑

m∈Z
ao−mar,m − ky,o

ωρ0
ar,o +

∑

m∈Z
bo−mat,m = − kiy

ωρ0
− ao, (19)

∑

m∈Z
co−mar,m +

ky,o
ωρ0

at,o +
∑

m∈Z
do−mat,m = co. (20)

To solve for the unknown coefficients ar and at numerically, equations (19) and (20) are truncated: both o
and m are limited to the range from −N to N leading to the infinite sums of n to be truncated to −2N to
2N . This results into the following matrix form:







a0 · · · a−2N

.

.

.
. . .

.

.

.
a2N · · · a0


 −




ky,−N
ωρ0

. . .
ky,N
ωρ0







b0 · · · b−2N

.

.

.
. . .

.

.

.
b2N · · · b0







c0 · · · c−2N

.

.

.
. . .

.

.

.
c2N · · · c0







d0 · · · d−2N

.

.

.
. . .

.

.

.
d2N · · · d0


 +




ky,−N
ωρ0

. . .
ky,N
ωρ0










ar [−N ]

.

.

.
ar [N ]
at [−N ]

.

.

.
at [N ]




=




− kiy
ωρ0

δ (−N, 0) − a−N

.

.

.

− kiy
ωρ0

δ (N, 0) − aN

−c−N

.

.

.
−cN




,

(21)

where δ (i, j) is the Kronecker delta.

As a result, the vector of unknowns ar and at can be calculated by solving the system of linear equations
shown in equation (21). The above group of equations make it possible to predict the reflected and transmitted
pressure fields based on the known admittance matrix and period of the material. Once ar and at are obtained,
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the energy based reflection and transmission coefficients can be calculated as:

R =
Iry
Iiy

=
1

k0 cos (θ)

N∑

m=−N

|ar,m|2Re (ky,m) , (22)

T =
Ity
Iiy

=
1

k0 cos (θ)

N∑

m=−N

|at,m|2Re (ky,m) , (23)

where Iry and Ity are the sound intensity in y-direction of the reflected and transmitted waves, Iiy is the
y-component of the sound intensity of the incident wave where index b refers to the incident pressure field.

3 Model validation

The model presented in section 2 is denoted as FDM (Fourier decomposition model) since it relies on Fourier
decomposition. In this section, the model is validated against simulations and/or analytical predictions with
cases ranging from a simple homogeneous layer with equidistant rigid separations to a so-called phase gra-
dient material where surface irregularities exist. In all cases, a good agreement is observed. For all cases
considered, in the FDM model N is set to 100, which accounts for 201 modes in all computations.

3.1 An impedance matched periodic homogeneous layer with rigid separations

As a first simple case, an artificial homogeneous material of infinite extent is considered, where periodic
rigid separations are included with a period of length d. Table 1 lists the basic parameters for this setup.
The equivalent density and the speed of sound of the artificial material are chosen so that the material is
impedance matched with air under normal incidence, meaning under normal incidence there should be no
reflection. A slow speed of sound (c0/3) is assigned to mimic the slow sound speed in porous materials. For
the studied frequency of 2000 Hz, the wavelength of incident sound waves is 17 cm. It is therefore assumed
that the studied material with a period width of 4 cm can therefore be treated as locally reacting.

Table 1: Parameters for the homogeneous layer validation setup

Period (d) thickness (l) Equivalent density (ρf ) Equivalent sound speed (cf ) Frequency (f )
4 cm 2 cm 3ρ0 c0/3 2000 Hz

For comparison, the same setup is simulated numerically with a finite element model in COMSOL Mul-
tiphysics. On both sides of the domains above and below the 4 cm wide homogeneous layer, a periodic
boundary condition is added. R and T from simulation are calculated similarly as in equation (22) and (23),
i.e., the ratio of the y-component of the reflected and transmitted intensity over the y-component of the inci-
dent intensity. However, it should be noted that different modes are not differentiated in the simulation, i.e.,
only the total y-component intensities are obtained in the simulation.

Also an analytical model to calculate the R and T of the corresponding case is derived. Assuming that the
material is locally reacting and that sound waves only propagate in the y-direction through the foam layer, R
and T can be calculated as [11]:

R =

∣∣∣∣∣
x12cos (θ)

2 − Z0x11cos (θ)− Z2
0 (x21 − x22cos (θ) /Z0)

x12cos (θ)
2 + Z0x11cos (θ) + Z2

0 (x21 + x22cos (θ) /Z0)

∣∣∣∣∣

2

, (24)

T =

∣∣∣∣∣
2Z0e

−jk0l

x12cos (θ)
2 + Z0x11cos (θ) + Z2

0 (x21 + x22cos (θ) /Z0)

∣∣∣∣∣

2

, (25)
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where Z0 is the impedance of air, t11, t12, t21 and t22 are four elements of the transfer matrix T, which in
this case is expressed as:

T =

[
cos (kf l) jρfcf sin (kf l)
jsin(kf l)
ρf cf

cos (kf l)

]
. (26)

The admittance matrix in equation (14) in this case can be calculated from the T:

Y =

[
−t11/t12 1/t12

t21 − t11t22/t12 t22/t12

]
. (27)

Figure 2 shows the comparison, where a good agreement is observed. An exact match is observed between
FDM and the analytical results and a slight mismatch is observed with the COMSOL results. The discrepancy
will be discussed further in section 4. One can also see that the reflection coefficient increases with angle
of incidence. As expected, at normal incidence, the reflection coefficient is close to 0 and the transmission
coefficient is close to 1 due to the impedance matching condition. Near grazing incidence it is the opposite
which is due to the extreme impedance mismatching condition.

-50 0 50

Angle of incidence/deg

0

0.2

0.4

0.6

0.8

1

R
,T

R: FDM

T: FDM

R: COMSOL

T: COMSOL

R: Analytical

T: Analytical

Figure 2: R and T of a homogeneous layer of infinite extent with periodic rigid separations under oblique
incidence at 2000 Hz

It should be noted that for the same case with an increased thickness, the mismatching between FDM and
FEM results is also increased. This will be discussed in section 4.

3.2 Two homogeneous layers forming a period

The model presented in section 2 is not limited to homogeneous materials of constant thickness, i.e., material
having a constant admittance matrix along the x-axis in Figure 1. The following case extends the validation
to an inhomogeneous case, where a period is composed of two homogeneous layers of the same thickness
separated by hard boundaries as illustrated in Figure 3. Each element of the admittance matrix is regarded as
a periodic two level staircase function along the x-axis where the values for the admittance matrix coefficients
were taken from equation (27). Table 2 lists the basic parameters for this case, where clear differences exist
in density and speed of sound of two materials involved. Besides, similar to the previous case, the speed of
sound in both materials is lower than that in air, mimicking two different foam materials.

Table 2: Parameters for the inhomogeneous 2 homogeneous layers case

Period (d) thickness (l) Equivalent density (ρf ) Equivalent sound speed (cf )
4 cm 2 cm 1: 3ρ0, 2: 4ρ0 1: c0/2, 2: c0/3
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Figure 3: Schematic representation of a periodic material composed by 2 different homogeneous layers of
equal width

Figure 4 shows the comparison between the finite element model and the FDM approach for this case. A
good agreement is found. Here, due to impedance mismatching, even at normal incidence R is non-zero.
The zero R occurs around ±40◦.

-50 0 50

Angle of incidence/deg

0

0.2

0.4

0.6

0.8

1

R
,T

R: FDM

T: FDM

R: COMSOL

T: COMSOL

Figure 4: R and T of a periodic layer composed by two different homogeneous material layers of infinite
extent under oblique incidence at 2000 Hz

3.3 An acoustic periodic structure with discretized phase gradients

As has been showed before [12], so-called phase gradient materials can yield designs of high absorption
based on cells of relatively low absorption. Here, the phase gradient material under study is a periodic
material composed by unit cells, as shown in Figure 5. It has been shown that a large absorption can be
achieved if a perfect linear varying phase of R/T (i.e., a phase gradient with constant phase jump) exists
along the metamaterial surface [13,14]. The intention of this validation is to see if the model can capture this
effect and can be used to design such materials.

Figure 5: Schematic representation of a periodic phase gradient material. A period is discretized into 4 cells.
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In Figure 5, each color block represents a homogeneous layer with a specific set of material parameters.
Adjacent blocks are separated by rigid boundaries. This case can be regarded as an extension of the case
described in section 3.2 where more than two homogeneous layers form a period. From here it is clear that
the R and T phase will be two staircase functions with period d. Contrary to the case in section 3.2, the
parameters of each homogeneous layer are selected to ensure the constant phase jump of R and T between
adjacent cells of π/2 so that a discretized linear phase gradient can be formed on both the top and the bottom
surfaces of the material.

For each cell in the period, the admittance matrix coefficients are obtained from the a uniform layer of this
material under normal incidence which can be calculated from equation (27). As before, these coefficients
are assembled into a staircase function representing the complete material. The pressure-based definition of
reflection and transmission coefficients r and t of each cell under normal incidence are expressed as:

r =
Pr

Pi
, t =

Pt

Pi
. (28)

Table 3 lists the setup information of this case under oblique incidence. In this case the phase of r starts from
0 for the first cell and increases by π

2 for each subsequent cell and a phase lag of π
2 between the r and t of

each cell is imposed. As a result, with periodic boundary conditions on both sides a discretized linear phase
gradient is formed for both r and t along x. The r and t amplitudes are taken equal with a value 0.5.

Table 3: Parameters for the oblique incidence phase gradient material

Cells per period Period (d) thickness (l) r phase t phase |r|, |t|
4 0.5 cm 10 cm

[
0 : π

2 : 3π
2

] [
0 : π

2 : 3π
2

]
+ π

2 |R| = |T | = 0.5

In the FEM model, each cell is characterized by an equivalent fluid model in terms of the equivalent
impedance Z and the equivalent wavenumber k. From a given r and t, k and Z can be calculated by:

k = ±atan

(
(r + t− 1)

√
− (r + t− 1) (r + t+ 1) (r − t+ 1) (t− r + 1)

(r + t+ 1) (−r2 + 2r + t2 − 1)

)
2

l
, (29)

Z = ±
√
− (r + t− 1) (r + t+ 1) (r − t+ 1) (t− r + 1)

−r2 + 2r + t2 − 1
Z0. (30)

The comparison is shown in Figure 6, where a good match is observed except for small discrepancies on
R for large angles of incidence. Furthermore, the predicted T for the complete metamaterial is always near
0 which complies to perfect phase gradient materials with an even number of cells per period, as can be
inferred from the paper by Shen et. al. [6].
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T: FDM

R: COMSOL
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Figure 6: R and T of a phase gradient material with a period composed by 4 cells under oblique incidence,
|R| = |T | = 0.5

PERIODIC STRUCTURES AND METAMATERIALS 3170



4 Limitation of the model

A major limitation of the current model is that it is only accurate when d is sufficiently small compared to
the wavelength. A larger d (consequently a larger cell width) can lead to oblique sound propagation within
cells, which contradicts the assumption made for the admittance matrix to be valid. In other words, the FDM
will turn out to be less accurate when d is large. To demonstrate this point, the case presented in section 3.1
is studied for different period widths, as listed in Table 4. The d values are chosen so that the transition of
pronounced mismatching to slight mismatching can be seen. The material thickness is chosen to correspond
to 1.17 times the wavelength in the material.

Table 4: Parameters for the homogeneous layer validation setup. Period width of 1, 3 and 5 cm correspond
to 1/17, 1/6 and 1/3 of the wavelength at 2000 Hz.

Period (d) thickness (l) Equivalent density (ρf ) Equivalent sound speed (cf ) Frequency (f )
1, 3, 5 cm 10 cm 3ρ0 c0/2 2000 Hz

Figure 7 shows the comparison between the FDM and the FEM results. It should be noted that due to the
locally reacting nature of the FDM approach, the results at these different d values are the same. Thus, the R
and T from only one case of the FDM approach is shown. From the figure one can see that with a decreasing
d under oblique incidence the FDM approach matches better with the FEM results. This trend is indicated by
the arrows, the arrow in the top left corner of the graph shows the trend for R, and the arrow at the bottom left
shows the trend for T . These results confirm that a partitioned material can be considered locally reacting
when the channel width d is sufficiently sub-wavelength which is the case when it is smaller than 1/15th of
the wavelength.
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0.1
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R: FDM

T: FDM

R: COMSOL, d = 1 cm

T: COMSOL, d = 1 cm

R: COMSOL, d = 3 cm

T: COMSOL, d = 3 cm

R: COMSOL, d = 5 cm

T: COMSOL, d = 5 cm

Figure 7: R and T of a partitioned homogeneous layer with infinite extent under oblique incidence at 2000
Hz

The reason for a large mismatch at a larger d is that in the FEM model the non-normal propagation within
cells is considered whereas in the FDM approach only vertical propagation is assumed. With a decreasing
d, in the FEM model the material behaves more and more locally reacting, meaning the assumption made
in FDM becomes more and more valid. This point is further illustrated by Figure 8, where the pressure
fields for several cases, as predicted by FEM are visualized. Each row in the figure represents a specific
period width d and each column represents a specific angle of incidence θ. The total pressure is visualized
everywhere except for the reflected region (region above the material) where only the scattered pressure is
visualized for clarity. Several conclusions can be obtained from the figures. First, under oblique incidence,
in-cell non-vertical propagation can be clearly seen for high values of d (last row). Second, the non-vertical
propagation is more pronounced with a larger angle of incidence. Connecting these observations with the
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earlier observation that a smaller d leads to a better matching between the FDM and the FEM results, one
may conclude that the mismatching is indeed due to the in-cell non-vertical propagations, which cannot be
accounted for accurately by the FDM due to the locally reacting assumption.

Figure 8: Pressure field of scattered field (above the material) and total pressure field (in cells and below the
material) visualized at different d and θ. For each case 20 periods visualized.

A similar requirement is found on d for phase gradient materials. To study the effect of the channel width on
the accuracy of the PDM for a phase gradient material, the case of section 3.3 is repeated for different period
widths d under normal incidence. All other parameters are taken from table 3 and the results are compared
to FEM simulations, as shown in figure 9. One can see that also here a smaller d leads to a better match with
the numerical prediction, i.e., the crosses (R) in the figure go upward closer to the FDM results for R and the
circles (T ) shift down closer to the FDM results for T . However, the error is significantly larger than for the
uniform partitioned material, where the agreement between all curves was excellent for normal incidence.
This is due to the existence of high-order spatial harmonics, which are surface waves with small wavelength
along the surface.
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Figure 9: R and T of a phase gradient material with a period composed by 4 cells under normal incidence. d
is varied and different values of R and T from the simulation observed whereas FDM gives the same result.

To further demonstrate this point, R and T of the phase gradient material of the same d and l as the previous
case (parameters listed in table 5) is also predicted and compared with FEM results, as shown in Figure 10.
By comparing case d = 1cm of Figure 7 and 10 (both cases of the same d and l), one can see that the FDM
provides a more accurate prediction for the homogeneous layer case than for the phase gradient material.
This can be explained in terms of the composition of the transmitted and reflection pressure fields.

Table 5: Parameters for the oblique incidence phase gradient material

Cells per period Period (d) thickness (l) r phase t phase |r|, |t|
4 1 cm 10 cm

[
0 : π

2 : 3π
2

] [
0 : π

2 : 3π
2

]
+ π

2 |R| = |T | = 0.5
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Figure 10: R and T of a phase gradient material with a period composed by 4 cells under oblique incidence,
|R| = |T | = 0.5, d = 1cm

Figure 11 and Figure 12 show the modal distribution of pressure amplitude for the two cases under 50°

incidence (ar,m and at,m in equation (22) and (23)), where only modes between -5 and 5 are shown. It
is clear that the phase gradient material induces the presence of multiple higher order spatial harmonics
whereas the homogeneous layer only induces the 0th order component. This is because for the homogeneous
layer case, although the material has rigid separations embedded, the admittance matrix is still homogeneous
along the surface whereas a large inhomogeneity is expected from the phase gradient case.
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Figure 11: ar and at of each mode of a homogeneous layer of infinite extent with periodic rigid separations
under 50° incidence at 2000 Hz
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Figure 12: ar and at of each mode of a phase gradient material with a period composed by 4 cells with 50°

incidence, |R| = |T | = 0.5

When higher orders are present, although d is small compared to the wavelength in air (λ0), the x-component
of the wave number of higher order modes is large, leading to pressure and velocity fluctuations with small
wavelength on the interface. For example, as is shown in Table 6, at 50° incidence, for d = 1 cm, d is already
around 5 times of the wavelength of the ±5

th
order modes in the x-direction. Thus, for higher order modes

this period width d can no longer be regarded as sub-wavelength, violating the locally reacting assumption
made in the FDM approach. Since the working principle of a phase gradient material is to induce higher
order components whereas the homogeneous layer doesn’t, for the same d a worse matching is expected for
the phase gradient material.

Table 6: Ratio between air wavelength and wavelength in the x-direction of each mode for d = 1cm under
50◦ incidence

m = −5 m = −4 m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
|λ0/λx,m| 85 68 51 34 16 1 18 35 52 69 87
|d/λx,m| 5 4 3 2 1 0 1 2 3 4 5

In case d is large and the structure can’t be considered as locally reacting, Mechel [5] proposed a model
based on mode matching to account for more complex wave propagation inside each cell, where the non-
axial propagation can be decomposed into different duct modes. Also in this approach, the shortcoming of
Mechel’s Fourier decomposition model of not being able to be applied in transmission problems can easily
be alleviated.

5 Conclusions

In this paper, a model based on the Fourier decomposition is proposed to predict the reflected and transmitted
fields of acoustic periodic structures. Several validation cases ranging from a simple periodic homogeneous
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layer separated by rigid separations to a perfect discretized phase gradient material are used to validate this
model. Results are compared with FEM simulations and/or analytical results, where in general a good match
is found and also a better match is found for a material with more homogeneity. Furthermore, the limitation
of the model of being mainly applicable for small period widths is shown by comparing results from several
cases with varied period widths to the FEM model results. This limitation is due to assuming the material
being locally reacting. It is found that the mismatch is more pronounced at large angles of incidence and
larger periods. Further, it is found that if the higher order spatial harmonics are present in the reflected and
transmitted fields, the sub-wavelength limitation on the period becomes more stringent as those higher order
modes lead to pressure and velocity fluctuation with wavelengths that are much shorter compared to the
incident wave. To overcome the limitation on period width, a mode matching method inside the cells looks
promising since the non-vertical propagation in cells can then be accurately accounted for.
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