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Abstract 
The investigations of jointed structures have attracted considerable attention, and current research mainly 

focuses on the dynamic characteristics of the straight-beam structures with joints, while sometimes the 

jointed structures are assembled by curved beams in engineering practice. Hence, this paper aims to propose 

a dynamic modeling method for a jointed structure with two hinged-hinged slightly curved beams (SCBs) 

connected by elastic joints. In this work a nonlinear dynamic model of a single SCB is first established, and 

then the global mode method is used to establish the nonlinear dynamic model of the jointed structure. 

Thereafter, the forced vibration responses of the jointed structure are calculated by successively using the 

Galerkin truncation method, harmonic balance method and pseudo arc-length method. Finally, case studies 

are carried out to validate the proposed modeling method and the results calculated by the proposed method 

are in good agreement with the results of finite element analysis, which demonstrates the accuracy of the 

proposed dynamic modeling method. 

1 Introduction 

The need for jointed structures is pervasive throughout the civil, manufacturing, and infrastructure 

engineering communities. The common jointed types involve bolted joints [1-12], welded joints [13-17] and 

pinned joints [18-22]. In recent years, there have been considerable investigations on the dynamic analysis 

of jointed structures to pursue more accurate modeling and meet the ever-increasing requirements of 

engineering structures.  

As a kind of typical jointed structures, the multi-beam structures connected with joints have been gotten 

considerable attention. On the one hand, some investigations were conducted based on the finite element 

method. Song et al. [23] proposed an adjust Iwan beam element to represent the bolted joints and then the 

finite element model of the beam structures with bolted joints is established to obtain its nonlinear dynamic 

responses. Wang [10] proposed an improved nonlinear dynamic reduction method to investigate a bolted 

lap beam system and validated by comparing with the full order methods. Tan et al. [24] used the parametric 

finite element method to analyze the effects of external load and non-parallel bearing surface on a bolted 

lap beam and verified by static hysteresis test experiments. Wang et al. [25] developed a three-dimensional 

progressive damage model to investigate the failure mechanism of composite bolted joints subject to tensile 

loading by using the Abaqus software. Gan et al. [26] proposed a simplified joint-slippage model based on 

the component method to calculate the load-deformation relationship of bolted joints and then the model is 

verified by comparing with the results of finite element analysis and the results of corresponding 
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experiments. Zhan et al. [27] proposed a finite element modeling and updating method based on the strain 

frequency response function and its effectiveness was validated by a L-shaped jointed structure. 

On the other hand, some investigations were conducted based on the approximate analytic solution or the 

semi-analytic solution. Ahmadian et al. [28] proposed a nonlinear analytical model for the joint interface 

parameter identification of a bolted lap beam with tip mass. This model was used to estimate the forced 

responses by adopting the multiple scale method and verified by corresponding experiments. Based on the 

Timoshenko beam theory, Adel et al. [29] proposed an analytical model for an assembled beam with 

nonlinear joints and investigated the effects of different parameters on the nonlinear responses of the 

assembled beam. Meisami et al. [30] proposed a novel analytical model for analyzing the nonlinear 

behaviors of a bolted flange joint and its accuracy was verified by the experimental and finite element 

results. In addition, Chen et al. [31] derived the nonlinear partial differential governing equations of a 

foldable multi-beam structure to investigate its saturation and jumping phenomena. Wei et al. [32] proposed 

a global mode method to establish the analytical model of multi-beam structures for obtaining the accurate 

global modes, and then a low-dimensional and high-accuracy model was derived by using the global modes. 

Thereafter, Wei et al. successfully applied the global mode method to the dynamic modeling and analysis 

of flexible structures connected with nonlinear joints [33], space manipulators [34], flexible spacecrafts [35], 

and a two-beam structure with nonlinear joints [36]. 

From the above, the existing investigations about multi-beam structures connected with joints mainly focus 

on the straight beams, while some multi-beam structures connected with joints may be curved in practice 

and the effects of the curvature are found to be significant and inevitable in the single curved beam 

structures. Lee et al. [37] investigated the anti-symmetric mode vibrations of a fixed-fixed curved beam 

subject to autoparameteric excitation. Thereafter, the nonlinear vibration behaviors of the single curved 

beam subject to base harmonic excitation were investigated in terms of sound radiation [38] and sound 

absorption [39]. Nayfeh et al. [40] proposed a modal hypothesis method to calculate the exact solution of 

the postbuckling beams with hinged-hinged, fixed-fixed, and fixed-hinged boundaries, respectively. Then, 

this method was applied to solve the nonlinear vibration isolation problem of a slightly curved beam (SCB) 

by Ding et al. [41]. Thereafter, Ye et al. [42] investigated the nonlinear behaviors of a SCB with nonlinear 

boundaries by using the harmonic balance method and the pseudo arc-length method. Based on the modal 

hypothesis method, Zhai et al. [43] proposed an analytical model of a SCB with hinged-hinged boundaries 

subject to axial loads, which focused on the effects of axial loads and initial configurations on the SCB and 

was verified by the corresponding finite element analysis. 

In view of the significant effects of curvature on the SCB structure, this work aims to propose a novel 

modeling method for a jointed structure with two hinged-hinged SCBs connected by elastic joints based on 

the modelling method of the single SCB structures and the global mode method of the straight-beam jointed 

structures. The rest of this paper is organized as follows. The analytic models of a single SCB and a jointed 

structure with two hinged-hinged SCBs connected by elastic joints are respectively established and 

corresponding solving process of forced vibration responses are given in Section 2. Case studies are carried 

out to verify the proposed modeling method in Section 3. Concluding remarks are finally summarized in 

Section 4. 

2 Dynamic modeling of a two-SCB structure connected with elastic 
joints 

2.1 Dynamic equation of a single SCB 

The schematic diagram of a hinged-hinged SCB is shown in Figure 1. The shape of the single SCB is 

sinusoidal, with L  denoting the length,    0 , sinw x t a x L  the initial configuration and a  the initial 

curvature. The single SCB is excited by a transverse concentrated force   0 cos( )FF t F t , with 
0F  being 

the amplitude and 
F  the frequency. The transverse deformation of the single SCB is  ,w x t , where x  

and t  denote the axial space coordinate and time coordinate, respectively. 
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Figure 1: The schematic diagram of a hinged-hinged SCB 

Based on the Euler-Bernoulli beam theory, the equation of motion of a single SCB is given as follows [40-

43] 

      2

0 0 0
0

2  cos
2

L

F

EA
Aw w EIw Iw w w w w w dx F t

L
                 (1) 

The hinged-hinged boundary conditions can be described as 

 
   

   

0, 0,        , 0

0, 0,   , 0

w t w L t

EIw t EIw L t

 

  
 (2) 

The linear governing equation of the free vibration of the single SCB can be derived by dropping the 

damping terms, nonlinear terms and external excitation from (1), and shown as 

 0 0
0

2  
2

LEA
Aw EIw w w w dx

L
        (3) 

The eigenvalue problem of equation (3) is first solved to obtain natural frequencies and mode shapes, which 

are needed for the subsequent discretization. Hence, assuming that the displacement of the single SCB is 

separable in space and time, the solution of equation (3) can be set as 

    , j tw x t x e   (4) 

with   denoting the natural frequency and  x  the mode function. Substituting the separable solutions 

(4) into (3) yields 

      2

0 0
0

2  
2

LEA
A x EI x w x w dx

L
            (5) 

Substituting the equation (4) into (2), the boundary conditions can be simplified as 

 
   

   

0 0,        0

0 0,   0

L

EI EI L

 

 

 

  
 (6) 

According to references [41-43], the general solution of non-homogeneous equation (5) can be rewritten as 

          1 1 1 1 1cos sin cos sinh sin
n

x A x B x C h x D x E x
L


    

 
      

 
 (7) 

Obviously, the general solution (7) is required to satisfy equation (5) and the boundary conditions given in 

equation (6). Hence, the equations can be written into matrix form as 

   T

1 1 1 1 1[         ] 0A B C D E H  (8) 

with  H  denoting the matrix related to eigenvalues and  
T

1 1 1 1 1[         ]A B C D E  the coefficients to be 

solved. By solving equation   det 0 H , the eigenvalues can be obtained and the coefficients are 

subsequently resolved. 

The governing equation of the single SCB as given in equation (1) can be discretized into ordinary 

differential equations by using the Galerkin truncation method. The transverse displacements of the SCB 

can be written as 
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      
1

,  
N

i i

i

w x t x q t


  (9) 

with N  being the truncation order of the Galerkin truncation method,  i x  the trial functions and  iq t  

the modal coordinates, respectively. 

Substituting equation (9) into (1), multiplying the weight functions  k x , and integrating along the length 

of the SCB, the following equations can be derived according to the orthogonality of mode shapes 

 

           

           

             

   

0 0

0 0
2

0
0 0

1 1

0
0

1

      

      

    2   
2

  
2

L L

k k k k k k

L L

k k k k k k

N NL L

k k k i i i i

i i

NL

k i

i

A x x dx q t EI x x dx q t

x x dx q t I x x dx q t

EA
x x dx q t x q t x q t w dx

L

EA
x w dx x

L

    

     

   

 

 





 

    
             

 

 

 

  

      

   

2

0
0

1

0

 2   

cos

NL

i i i

i

F k F

q t x q t w dx

F t x x



 



    
          

 



 (10) 

where,  k x  takes the same form as  i x , with 1,  2, 3  k N …, . Fx  represents the location of the 

transverse concentrated force. The forced vibration responses of equation (10) can be calculated by using 

the harmonic balance method and the pseudo arc-length method. It should be noticed that the response 

amplitude of the displacement takes the maximum value of the stable periodic solution of  ,w x t  in this 

work. 

2.2 Dynamic equation of a two-SCB structure connected with elastic joints 

The schematic diagram of a two-SCB structure connected with elastic joints is shown in Figure 2. Regarding 

the above jointed structure, the dynamic characteristics of the elastic joints are introduced into the global 

model of the jointed structure by applying the equilibrium conditions between the two SCBs and the joints, 

and the global mode method is subsequently used to obtain natural frequencies and mode shapes of the 

jointed structure. 

L1

w1(x1,t) F(t)

w01(x1,t)

w02(x2,t)

w2(x2,t) L2

k

 

Figure 2: The schematic diagram of a two-SCB structure connected with elastic joints 

Similar to equation (1), the equation of motion of the two SCBs are written as follows 

      2

0 0 0
0

     2  cos ,   1,2
2

iL

i i i i i i i i i i F

i

EA
Aw w EIw Iw w w w w w dx F t i

L
                  (11) 

The geometric, force and moment matching conditions at the location of the elastic joint are given as follows 

 
   

        
1 1 2

1 1 2 2 1 1

, 0, 0,        

 ,  0, 0, ,

w L t w t

EIw L t EIw t k w t w L t

 

     
 (12) 

The corresponding boundary conditions are described as 
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   

   

1 2 2

1 2 2

0, 0,        , 0

 0, 0,    , 0

w t w L t

EIw t EIw L t

 

  
 (13) 

According to references [32-36], the global modes can be assumed as  

    , ,   1,2j t

i i i iw x t x e i   (14) 

Substituting equation (14) into the free vibration equation of each SCB yields 

      2

0 0
0

  2  ,   =1,2
2

iL

i i i i i i i i i

i

EA
A x EI x w x w dx i

L
            (15) 

Hence, the general solution of equation (15) can be solved as 

 

         

         

1 1 1 1 1 1 1 1 1 1 1 1

1

2 2 2 2 2 2 2 2 2 2 2 2

2

cos sin cos sinh sin

cos sin cos sinh sin

n
x A x B x C h x D x E x

L

n
x A x B x C h x D x E x

L


    


    

 
      

 
 

      
 

 (16) 

Substituting equation (16) into equations (12), (13) and (15), and writing the equations into matrix form 

yields 

   T

1 2 10 110 10
[   ] 0 

H    (17) 

where, 
T

1 1 1 1 1 1[         ]A B C D E  and 
T

2 2 2 2 2 2[         ]A B C D E . Then the global modes can be obtained 

by solving equation   10 10
det 0


H  and the coefficients are subsequently resolved. 

By using the first N  global mode shapes, the displacements of the jointed structure can be written as  

      
1

,    1,2
N

j

i i i i j

j

w x t x q t i


   (18) 

Applying the Galerkin truncation method to equation (11), the low-dimensional nonlinear ordinary 

differential equations are obtained as follows 

 

             

             

             

2 2

0 0
1 1

2 2

0 0
1 1

2

0
1 1

  

  

   2  
2

i i

i i

i

L L
k k k k

i i i i i k i i i i i k

i i

L L
k k k k

i i i i i k i i i i i k

i i

N NL
k k j j

i i i i i k i i j i i j

j ji

A x x dx q t EI x x dx q t

x x dx q t I x x dx q t

EA
x x dx q t x q t x q t

L

    

     

   

 

 

 



 

   
     

   

  

  

 

         

   

2

0
0

1

2
2

0 0
0 0

1 1 1

0 1 1

 

   2   
2

cos

i

i i

L

i i

i

N NL L
k j j

i i i i i i j i i j i i

i j ji

k

F F

w dx

EA
x w dx x q t x q t w dx

L

F t x x

  

 



  

 
 
 
 

    
       

     
 

 

   

 (19) 

where,  k

i ix  takes the same form as  j

i ix  with 1,  2, 3  k N …, . Fx  represents the location of the 

transverse concentrated force. The forced vibration responses of equation (19) can be calculated by using 

the harmonic balance method and the pseudo arc-length method. 

3 Case studies and discussions 

In this section, case studies are carried out to verify the proposed modeling method. According to reference 

[41-43], the partial differential equations can be discretized into ordinary differential equations by using the 

Galerkin truncation method with the truncation order being 4, and the forced vibration responses can be 
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calculated by applying the harmonic balance method with the harmonic order being 3. The material of the 

SCB is aluminum and corresponding physical parameter values are given in Table 1. 

Table 1: Physical parameter values of an aluminum SCB 

Item Notation Value 

Length of a single SCB 1 2 = L L L  0.5 m 

Height of the cross section h  0.005 m 

Width of the cross section b  0.02 m 

Young’s modulus E  68.9 GPa 

Density   2800 kg/m3 

External damping coefficient   0 N s/m2 

Internal damping coefficient   2×107 N s/m2 

3.1 A single SCB with hinged-hinged boundaries 

Firstly, a single SCB with hinged-hinged boundaries is analyzed and its schematic diagram has been 

presented in Figure 1. Figure 3(a) depicts the first four natural frequencies of the SCB affected by different 

initial curvature, which depicts that the first natural frequency of the SCB increases gradually with the 

increase of initial curvature and then exceeds the second natural frequency when the initial curvature 

exceeds around 0.008 m. Meanwhile, the initial curvature has little effects on the other three natural 

frequencies. Figure 3(b) depicts the first four mode shapes with the curvature being 0.003 m. In addition, 

the results of corresponding finite element analysis have been also depicted in Figure 3. It should be point 

out that the lines represent the results of the proposed method and the circles represent the results of 

corresponding finite element analysis. Evidently, the results calculated by the proposed method introduced 

in Section 2.1 are in good agreement with their counterparts by the finite element method, which verifies 

the accuracy of the modeling method for the single SCB with hinged-hinged boundaries. 

(a) (b)  

Figure 3: The first four natural frequencies and mode shapes of the single SCB 

The forced vibration responses of the single SCB with hinged-hinged boundaries have been subsequently 

calculated and the corresponding analysis results have been depicted in the form of amplitude-frequency 

response curves in Figure 4. In Figure 4(a), the external excitation amplitude is constant with the value of 

10 N, but the initial curvature respectively takes the value of 0.002, 0.003 and 0.004 m. The curves of Figure 

4(a) illustrate that the hardening and softening nonlinear characteristics coexist, and the softening nonlinear 

characteristics become more dominant while the super-harmonic resonance is suppressed with the increase 

of the initial curvature. In Figure 4(b), the initial curvature is constant with the value of 0.003 m, but the 

external excitation amplitude respectively takes the value of 5, 10, 15 N. The curves of Figure 4(b) illustrate 

that the resonance intensity becomes larger and the nonlinear behaviors become more significant with the 

increase of the external excitation amplitude. 
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(a) (b)  

Figure 4: Amplitude-frequency curves of the single SCB affected by the initial curvature and external 

excitation amplitude 

3.2 A jointed structure with two hinged-hinged SCBs connected by elastic joints 

On the premise of ensuring the accurate modeling of the single SCB, a jointed structure with two hinged-

hinged SCBs connected by elastic joints is analyzed and its schematic diagram has been presented in Figure 

2. Regarding the jointed structure, natural frequencies and mode shapes of the jointed structure are first 

obtained, and Figure 5(a) depicts the first four natural frequencies of the jointed structure affected by 

different initial curvature. Figure 5(a) illustrates that the first two natural frequencies of the jointed structure 

increase gradually and even exceed the third and fourth natural frequencies with the increase of the initial 

curvature, while the initial curvature has little effects on the other two natural frequencies. Moreover, the 

first four mode shapes of the jointed structure with the initial curvature being 0.003 m are depicted in Figure 

5(b). Thereafter, the results of corresponding finite element analysis are also depicted in Figure 5 and they 

are in good agreement with their counterparts by the proposed method introduced in Section 2.2, which 

further verifies the accuracy of the modeling method for the jointed structure with two hinged-hinged SCBs 

connected by elastic joints. 

(a) (b)  

Figure 5: The first four natural frequencies and mode shapes of the jointed structure 

Then, the forced vibration responses of the jointed structure with two hinged-hinged SCBs connected by 

elastic joints have been subsequently calculated and the corresponding analysis results have been depicted 

in the form of amplitude-frequency response curves in Figure 6. It should be point out that the results of the 

amplitude-frequency response curves in Figure 6 do not consider the coupling terms introduced by the 

nonlinear terms, that is, letting the superscript j  be equal to the value of the superscript k  in equation (19)

. In Figure 6(a), the external excitation amplitude is constant with the value of 10 N, but the initial curvature 

respectively takes the value of 0.002, 0.003 and 0.004 m. The curves of Figure 6(a) illustrate that the 

hardening and softening nonlinear characteristics coexist at the first primary resonance, and the softening 

nonlinear characteristics become more dominant while the super-harmonic resonance is suppressed with the 

increase of the initial curvature. However, the nonlinear characteristics are not obvious at the second primary 

resonance. The second primary resonance peaks of the jointed structure shift to the right with the increase 
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of curvature, which is corresponding to the phenomena depicted in Figure 5(a). In Figure 6(b), the initial 

curvature is constant with the value of 0.003 m, but the external excitation amplitude respectively takes the 

value of 5, 10, 15 N. The curves of Figure 6(b) illustrate that the resonance intensity becomes larger and the 

nonlinear behaviors become more significant with the increase of the external excitation amplitude. 

(a) (b)  

Figure 6: Amplitude-frequency curves of the jointed structure affected by the initial curvature and external 

excitation amplitude 

4 Conclusions 

This paper investigates the dynamic modeling method and nonlinear dynamic characteristic analysis of a 

jointed structure with two hinged-hinged SCBs connected by elastic joints. The analytic models of a single 

SCB and a jointed structure with two hinged-hinged SCBs connected by elastic joints are respectively 

established. The global mode method is successfully used to obtain natural frequencies and mode shapes of 

the above jointed structure, which was only applied to the modeling of straight-beam structures with joints 

in the existing research. Thereafter, corresponding forced vibration responses of the single SCB and the 

jointed structure are calculated by adopting the Galerkin truncation method, harmonic balance method and 

pseudo arc-length method. The effects of initial curvature and external excitation amplitude on the nonlinear 

dynamic characteristics of the single SCB and the jointed structure are analyzed by carrying out two case 

studies. 

Some conclusions can be reached by analyzing the results of the case studies. Firstly, the increase of initial 

curvature has significant effects on one mode of the single SCB and two modes of the jointed structure but 

little effects on other modes. Secondly, the softening nonlinear characteristics become more dominant while 

the super-harmonic resonance is suppressed with the increase of the initial curvature. Thirdly, the resonance 

intensity becomes larger and the nonlinear behaviors become more significant with the increase of the 

external excitation amplitude. 
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