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Abstract
In the past decades, periodic structures and metamaterials in particular have attracted significant attention as
innovative noise and vibration control solutions which can combine lightweight requirements with favourable
vibro-acoustic performance. To predict their vibro-acoustic performance, periodicity is generally exploited
by considering a single finite element unit cell model and calculating dispersion curves. However, to predict
their vibration attenuation performance in real-life applications, finite structures are of interest. Due to
the often complex and detailed nature of the unit cells, the unit cell finite element models can become
large, which would rapidly render finite structure models comprised of unit cell assemblies computationally
unaffordable. To overcome this problem, in this work, a wave based reduced order modelling approach is
proposed to efficiently compute forced vibration responses of planar finite periodic plates.

1 Introduction

Architected structures with stop band behaviour, such as phonic crystals (PCs) and locally resonant metama-
terials (LRMs), open the door towards novel lightweight vibroacoustic solutions, attenuating incoming noise
and vibration in a targeted frequency range [1, 2]. These structures are mostly represented by a periodic
repetition of unit cells (UCs). To predict the stop band, the so-called UC modelling approach is used, where
an infinite periodic structure is often assumed so that the Bloch-Floquet (BF) periodic boundary conditions
(BCs)can be applied to a single UC model and the band structure is calculated by solving the resulting dis-
persion eigenvalue problem (EVP) [3]. The UC model is often built using the finite element method (FEM)
as it allows high geometrical complexity [4, 5]. However, the intricate geometries or material distribution of
the UCs can result in large sized UC models and the band structure calculations can become computation-
ally expensive. Therefore, several reduced order modelling approaches have been introduced, such as the
Bloch mode synthesis (BMS) [6], the generalized Bloch mode synthesis (GBMS) [7] and the reduced Bloch
mode expansion (RBME) [8] to speed up dispersion band structure computations. In practice, however, the
predicted stop band by assuming infinite periodicity may not be preserved in its finite counterpart due to the
effect of the BCs [9]. This strongly limits the use of UC models for real-life applications.

To be able to compute the forced vibration response of finite periodic structures, assemblies of many UCs
have to be dealt with. Such full-scale FE models would require higher computational effort. To reduce
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the computation time and memory, various methods for model order reduction (MOR) of finite periodic
structures have recently been developed and can be catagorized into two types: substructuring and wave
expansion methods [10]. The former follows the rationale of the Craig-Bampton method, where a single
UC is firstly partitioned with interior and interface degrees of freedom (DOFs) and reduced through the
projection based approaches. Next, the full system is constructed by assembling the identical reduced UC
models, after which the frequency or time domain reduction method is applied to the assembled full system
to further accelerate the vibration response calculations. Several combinations of UC and full structure
reduction approaches are developed: van Ophem et al. applied Krylov subspace to reduce the UC model and
applied the Automatic Krylov Subspace Algorithm (ASKA) for the full system [11], Mencik et al. uses the
BMS to build the basis for interior DOFs of the UC model [12], Van Belle et al. improves the efficiency of
the UC reduction by applying the GBMS which allows to further reduce the UC interface DOFs resulting
in a smaller UC reduced order model (ROM) and reduces the assembled full system using the eigen modes
and the static enrichment as global basis [13]. Although the computational effort is significantly reduced,
the step of building the global basis can still be expensive since the encountered full system scales linearly
with the number of UCs. On the other hand, the MOR methods based on the wave expansion [14, 15] enable
higher reduction as they build the global basis only on the local UC model: the global basis is built through
the free or forced vibration waves of the corresponding infinite periodic structure. Thanks to the infinite
periodicity, the Bloch waves can be solved cheaply using the UC modelling approach without dealing with
the full system. However, the current wave expansion based approaches are limited to 1D periodic structures,
which cannot take the full advantage of the periodicity when 2D and 3D periodic structures are encountered.

To further improve the efficiency by fully utilizing the periodicity, a reduced order modelling approach
is introduced following the rationale of the wave based method (WBM) [16]. This method belongs to the
family of indirect Trefftz methods. It approximates the dynamic field variables using a weighted sum of wave
functions which are exact solution of the governing partial differential equations (PDEs). By minimising the
errors on BCs in a weighted residual sense, a system of equations is obtained and solved for the unknown
contribution factors of each wave function. However, unlike the typical WBM which starts from exact
analytical solutions to the governing PDEs in simplified domains, the analytical wave functions are not
available for structures composed of arbitrary UC assemblies. To overcome this, in this work, the use of the
UC modelling approach is proposed to calculate the wave functions by solving a dispersion EVP for a single
UC FE model.

The rest of this paper is organized as follows: In Section 2, the problem description is presented. Section
3 details the reduced order modelling approach for periodic structures based on the idea of the WBM. In
Section 4, a convergence study is presented with respect to the input parameters of the approach and the
accuracy and computation time are compared to the dynamic substructuring approach for an increasing
number of UCs are performed. Finally, the main conclusions are summarized in Section 5.

2 Problem description

In this work, rectangular metamaterial plates are considered, which are composed of a 2D repetition of a
single UC in a rectangular periodic grid as shown in Fig.1. The plate is subjected to a given external load f
inside the domain Ω, the traction T and the displacement constraints on the boundary Γ. In this model, the
material and kinematic linearity are assumed and a steady state response is considered. Therefore, the model
is analysed for the vibration response in the frequency domain.

3 Methodology

In this section, the general rationale and overview of the approach are first introduced in Section 3.1. After
that, each building block of the approach is illustrated: the UC FE model and the UC reduction in Section
3.2, the overview of the wave finite element method (WFEM) in Section 3.3, the calculation of free and
forced vibration waves in Section 3.4 and Section 3.5, the evaluation of UC waves on the boundary of the
finite structure and the calculation of the contribution factors as well as the back projection in Section 3.6.
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Figure 1: Schematic of a periodic metamaterial plate composed of 5× 5 UCs.

3.1 General rationale and overview of the approach

Following the WBM, the displacement field u of the finite plate is approximated using a linear superposition
of free and forced vibration waves [16]:

u(x, y, z) ≈ û =

N∑

α=1

cαΦα +Φp, (1)

where N is the number of free vibration waves taken into account, cα are unknown contribution factors
of each free vibration wave Φα, which satisfies the equilibrium equation of the corresponding free infinite
structure at a given frequency. Φp is a forced vibration wave which is also the particular solution of the
corresponding infinite structure for the given external load f at the same frequency value.

Contrary to the classical WBM, the wave sets of Φα and Φp have to be computed numerically since they
are not readily available for the arbitrary complex periodic metamaterial plates. As the summation Eq.(1)
satisfies the equilibrium equation everywhere inside the domain Ω (Fig.1), the equilibrium condition is only
violated on the boundary of the finite plate structure. Therefore, by minimizing the errors on the BCs, the
displacement field is solved from a system in the equations of unknown contribution factors cα. The flow
chart (Fig.2) gives the overview of the procedure. The following sections illustrate each of the building
blocks of the flow chart in detail.
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Figure 2: Flow chart of the approach.

3.2 UC FE model and model reduction

The UC is firstly discretized using the FEM (Fig.3). The governing equation of the UC in the frequency
domain is written as:

DUC(ω)UUC = FUC , (2)
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(a) (b)

Figure 3: Example FE discretization of the UC model (a) and top view of the FE UC model partitioned
according to interior DOFs (blue) and interface DOFs (orange) (b).

where DUC = −ω2MUC + iωCUC + KUC is the dynamic stiffness matrix of the UC. MUC , CUC and
KUC are the mass, damping, stiffness matrices of the UC, respectively, ω is the given angular frequency of
interest, FUC is the external force on the UC and i2 = −1.

As the UCs FE model is generally of large size due to the complex geometry, UC MOR is applied to enable
efficient computation of the wave basis. Here the reduced UC model is computed using the GBMS [7]. First,
the interior and interface DOFs are partitioned following Fig.3:

[
DII DIA

DAI DAA

] [
UI

UA

]
=

[
0
FA

]
, (3)

where subscripts I and A indicate the interior and the interface DOFs of the UC, respectively, and UT
A =[

UT
L UT

B UT
R UT

T UT
BL UT

BR UT
TR UT

TL

]
, the force on the interior DOFs FI is absent since no

external force is imposed.

Then UC DOFs are reduced using a truncated set of interior normal modes and interface modes:
[
WI

WA

]
=

[
VI ΨIAVA

0 VA

] [
UI

UA

]
, (4)

where WI and WA are the reduced DOFs of the corresponding UC DOFs of UI and UA, ΨIA = K−1
II KIA

is the matrix of static constraint modes, VI and VA are the matrices of nI interior and nA interface modes
[7].

3.3 Overview of the WFEM

The Floquet propogator imposes a certain way that the UC wave propagates or decays through the infinite
periodic structure (Fig.4). When the system vibrates according to one of these waves, the ratio between
the displacement field of neighbouring UCs along x or y direction is a constant, which is defined as the
propagation constant λx or λy. However, since the interface displacements between neighboring UCs must
be compatible and the interface forces must be balanced, the BF BCs are introduced that every single UC
must satisfy (Fig.5). As the UCs are identical to each other, only one UC is considered.

The compatibility condition of the UC displacement is written as:

UUC = ΛRU
red
UC (5)

and the force balance at the UC interface is written as:

ΛLPUC = 0 (6)
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Figure 4: UC wave propagation (a) and Floquet propogator on the periodic metamaterial plate (b).

(a) (b)

Figure 5: BF BCs for the single UC: compatibility conditions (a) and equilibrium conditions (b).

where

UT
UC =

[
UT

I UT
L UT

B UT
R UT

T UT
BL UT

BR UT
TR UT

TL

]
,

Ured
UC

T
=

[
UT

I UT
L UT

B UT
BL

]
,

PT
UC =

[
PT

I PT
L PT

B PT
R PT

T PT
BL PT

BR PT
TR PT

TL

]
,

ΛL =




I 0 0 0 0 0 0 0 0
0 I 0 λ−1

x I 0 0 0 0 0
0 0 I 0 λ−1

y I 0 0 0 0
0 0 0 0 0 I λ−1

x I λ−1
x λ−1

y I λ−1
y I


 ,

ΛT
R =




I 0 0 0 0 0 0 0 0
0 I 0 λxI 0 0 0 0 0
0 0 I 0 λyI 0 0 0 0
0 0 0 0 0 I λxI λxλyI λyI


 .

Imposing the BF BCs on the governing equation (Eq.(2)) of the UC, the free and forced vibration waves can
now be solved from the following equation:

ΛL(DUC(ω)ΛRU
red
UC − FUC) = 0, (7)

where the balance of the residual force PUC = DUCΛRU
red
UC −FUC is satisfied through the Bloch-Floquet

BCs (Eq.(6)) and the UC displacement UUC is recovered using the compatibility condition of the Eq.(5).

In the absence of the external force FUC , the free vibration UC waves are obtained by solving the EVP of
the Eq.(7) with at least one of {ω, λx, λy} as the unknown, which will be detailed in Section 3.4. Otherwise,

PERIODIC STRUCTURES AND METAMATERIALS 3137



the forced vibration UC waves are solved by inverting the stiffness matrix of ΛLDUCΛR for the external
force ΛLFUC with the given values of {ω, λx, λy} as will be illustrated in Section 3.5.

To obtain the global free vibration wave Φα on the entire structure, the multiplication of the UC wave UUC

with the Floquet propagator λnx
x λ

ny
y is performed as shown in Fig.4:

Φα(nx, ny) = λnx
x λ

ny
y UUC , (8)

where Nx, Ny are the number of UCs in the finite plate along x and y directions, while (nx, ny) is the
coordinate of the UC on the grid ranging from 0, 1...Nx − 1 and 0, 1...Ny − 1 respectively and Φα(nx, ny)
is the global free vibration wave Φα on the corresponding UC.

3.4 Numerical free vibration waves

The free vibration waves are the waves that propagate or decay in periodic structures without external force.
As derived in the previous section, the free vibration waves are calculated on a single UC by solving the EVP
(Eq.(7)) with external force absent. However, at a given frequency, there are still an infinite amount of free
waves that satisfy the Eq.(7). A wave selection criterion following the rationale of the WBM is introduced
(Tab.1).

Table 1: Sets of wave functions.

Set Propagating constants and wave functions

1 Imposing λx = exp
(
2mπi
Nx

)
,m = 0, 1...Nx − 1

and solve for λy and UC waves UUC

2 Imposing λy = exp
(
2nπi
Ny

)
, n = 0, 1...Ny − 1

and solve for λx and UC waves UUC

where Nx, Ny are the number of UCs in the finite plate along x and y directions as well as λx and λy are the
propagation constants.

If the obtained eigenvalue of λx or λy is of unit modulus, then the Floquet propagator only changes its phase
through the UC grid and UC waves propagates through the entire struture. On the other hand, if the modulus
of the eigenvalue is larger or smaller than 1, then an evanescent wave is obtained since it only propagates
along one direction and decays along the perpendicular direction. In the numerical sense, the propagating
waves and slowly evanescent waves build the dominant basis of the displacement field of the finite structure
and the highly evanescent waves can be neglected in an approximation. Therefore, a dimensionless parameter
d = log(|λs|) (s = x, y) that measures the magnitude of the decay is introduced and the waves are arranged
in ascending order of d. The truncation criterion for the wave selection is proposed as C < CT to include the
dominant wave basis, where only the first C percentage of waves are included and CT is the given parameter
for the truncation.

By expanding the EVP (Eq.(7)) with respect to λy, the quadratic form of the EVP is obtained as [3]:

(H0 + λyH1 + λ2
yH2)U

red
UC = 0 (9)

where H0, H1 and H2 are the constant matrices associated with eigenvalue terms λy of different order.

Additionally, since the eigenvalue problem (Eq.(9)) is generally ill conditioned [17] due to the existence of
highly evanescent waves resulting in extremely large and small eigenvalues, extra effort needs to be taken
when solving the equation. In this work, the Cayley transform [18] is applied to avoid directly calculating
extreme eigenvalues in the EVP solver. First, the Eq.(9) is linearized as follows:

[
0 βI
H0 H1

] [
Ured

UC

λyU
red
UC

]
= λy

[
βI 0
0 −H2

] [
Ured

UC

λyU
red
UC

]
(10)
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where β is a scalar which is chosen to be the norm of H1 to avoid the ill conditioning due to the different
order of magnitude between matrices.

Next, the Cayley tranform is applied to Eq.(10):
[
bβI βI
H0 H1 − bH2

] [
Ured

UC

λyU
red
UC

]
= ηy

[
−cβI βI
H0 H1 + cH2

] [
Ured

UC

λyU
red
UC

]
(11)

where the transformed eigenvalue ηy = (λy + b)/(λy − c), as well as b and c are the constants imposed in
this transformation.

Using the Cayley transform, the extremely large eigenvalues of λy are approaching 1 and small eigen values
are approaching −b/c in the transformed space. However, the original eigenvalues near the imposed constant
c now become very large, which should be taken care of beforehand by chosing the transformation constants.
To find a suitable value of the constant c, several random numbers are generated in a given domain and the
constant correponding to the best condition number of the matrix H0 + λyH1 + λ2

yH2 is chosen as c. After
solving the transformed EVP (Eq.(11)), the original eigenvalue λy is obtained by the back transformation
λy = (cηs + b)/(ηy − 1 + ϵ), where the constant ϵ is chosen above machine precision.

When the vector of master DOFs of the UC Ured
UC is solved, the UC waves are obtained as:

UUC = ΛRU
red
UC . (12)

The same procedure also applies when solving for the free vibration waves of the Set 2. With the UC waves
obtained, the global free vibration waves Φα for the finite plate are obtained by expanding these UC waves
UUC through multiplication with the propagation constants λx and λy using Eq.8.

3.5 Numerical forced vibration waves

In this section, the procedure to calculate forced vibration waves using the WFEM is illustrated. First,
periodic repetition of the finite plate and the given external force F is assumed as shown in Fig.6.

Figure 6: Assumption of infinite periodic repetition of the finite plate.

Next, the discrete Fourier transform (DFT) is applied to the external force F with respect to the UC grid, so
that F is decomposed as UC modal forces FUC,mn:

FUC (m,n) =
1

NxNy

Nx−1∑

nx=0

Ny−1∑

ny=0

λ−nx
x,m λ

−ny
y,n FUC (nx, ny) (13)

where the propagation constants λx,m = exp(2πim/Nx), λy,n = exp(2πin/Ny). Nx, Ny are the number
of UCs in the finite plate along x and y directions, while (nx, ny) is the coordinate of the each UC on the
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Figure 7: Calculation of the forced vibration wave.

grid ranging from 0, 1. . .Nx − 1 and 0, 1. . .Ny − 1 respectively. As a result of the DFT, the reciprocal
coordinates m and n also range from 0, 1. . .Nx − 1 and 0, 1. . .Ny − 1. FUC (nx, ny) is the given external
force F on the UC at spatial coordinates (nx, ny) and FUC,mn is the UC modal force corresponding to the
projection of F on the discrete Fourier wave basis λnx

x,mλ
ny
y,n.

By expanding each UC modal force FUC (m,n) to the entire finite plate through the multiplication with
the corresponding discrete Fourier wave basis, the original external force F is recovered in the following
summation:

FUC (nx, ny) =

Nx−1∑

m=0

Ny−1∑

n=0

λnx
x,mλ

ny
y,nFUC (m,n) . (14)

Therefore, the forced response vibration wave with respect to the external force F can be obtained through
the summation of the forced vibration waves to each of the force component of λnx

x,mλ
ny
y,nFUC (m,n). As

each force component only changes its phase through the UC grid by multiplying the propagation constants
of λx,m and λy,n, the resulting forced vibration waves are solved on a single cell by applying the BF BCs
(Fig.8).

(a) (b)

Figure 8: Periodicity of the force component (a) BF BCs of the UC in the reciprocal space (b).

Using the decomposition the Eq.14, the forced vibration waves with respect to each of modal force are
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obtained by solving the following equation:

ΛL(DUCΛRU
red
UC (m,n)− FUC (m,n)) = 0. (15)

With the vector of Ured
UC (m,n) solved, the UC waves are obtained by re-expanding over the UC as:

UUC (m,n) = ΛRU
red
UC (m,n) . (16)

Finally, through the inverse DFT the global forced vibration wave Φp is obtained as:

Φp (nx, ny) =

Nx−1∑

m=0

Ny−1∑

n=0

λnx
x,mλ

ny
y,nUUC (m,n) (17)

where Φp (nx, ny) is the global wave Φp on the UC located at (nx, ny).

3.6 Solving the system

With the free and forced vibration waves obtained, the approximated displacement field is represented by the
linear superposition with unknown contribution factors as defined in the Eq.(18).

û =
N∑

α=1

cαΦα +Φp. (18)

Next, the boundary conditions are imposed in a collocation sense at all FE nodes along the boundary [19]:

B(û) = 0 (19)

where B measures the mismatch of the boundary conditions using the approximated displacement field.
Therefore, a linear system equation is obtained and the contribution factors cα are solved for:

Gc = b, (20)

where G is a dense matrix corresponding to the free vibration waves at the FE nodes along the boundary,
the vector b corresponds to the forced vibration wave at the FE nodes along the boundary and the imposed
constraints of the displacement, the vector c is the vector of contribution factors cα.

Finally, the displacement field at the given frequency is obtained by imposing the contribution factors back
to the Eq.(18). After that, the process is performed again for the next frequency of interest.

4 Numerical results

In this section, the strengths of the WBM in terms of computation time for forced response analysis of flat
rectangular periodic plates are demonstrated by presenting a time assessment of the WBM as compared to
the UC substructuring method [13] for the differently sized plates. Before doing so, a convergence study
of the GBMS inputs as well as the truncation factor of WBM is first performed for a clamped finite plate
composed of 5× 5 UCs to find the proper input parameters.

4.1 UC modal reduction

Following the design in [20], a UC consisting of a 30 × 30 × 1 mm3 aluminum plate with a beam-shaped
PMMA resonator on the top is considered. The geometric parameters and material properties for the host
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structure and resonator follow the data provided in the corresponding paper. The UC is discretized using 114
quadratic hexahedral solid elements, which leads to 4557 DOFs of the UC FE model in total (Fig.3(a)).

To find the proper input parameters of the GBMS, the computation of the eigenfrequencies of a clamped
finite plate composed of 5 × 5 GBMS reduced UCs is assessed for different numbers of interior modes and
interface modes. The relative errors on these eigenfrequencies are computed against the corresponding finite
plate FOM. At first, the interface DOFs are kept and only the interior modal reduction is performed (Fig.9). It
is shown that from nI = 30 interior modes onwards, the improvement of the accuracy is limited. Considering
30 interior modes, the interface reduction is now also performed (Fig.10), revealing that the highest relative
error stagnates from nA = 50 interface modes. Therefore, 30 interior modes and 50 interface modes are
chosen to be suitable inputs of the GBMS procedure.
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Figure 9: Eigenfrequencies (a) and relative error of the eigenfrequencies (b) computed for the clamped finite
plate assembly of 5× 5 BMS UC ROMs, considering different number of interior modes.
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Figure 10: Eigenfrequencies (a) and relative error of the eigenfrequencies (b) computed for the clamped
finite plate assembly of 5× 5 GBMS UC ROMs, considering different interface modes.
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4.2 Selection of the truncation factor

With the reduced UC model obtained, the WBM and the UC substructuring method is applied to the clamped
finite plate composed of 5×5 UC ROMs (Fig.11) to calculate the point-to-point FRF over the frequency
values of 0:2:1000 Hz. As the WBM relies on the GBMS reduced UC model, the accuracy of the WBM will
not exceed that of the UC substructuring method. Therefore, the corresponding GBMS UC substructuring
solution serves as the reference. In the following cases, the truncation factor CT increases from 40 to 100.
For each truncation factor, the FRF and the relative error are shown in Fig.12. The accuracy of the WBM
increases as the truncation factor grows (Fig.12(b)). Even though the error for CT = 60 is now acceptable,
the truncation factor can be further increased to reduce this error, with CT = 100 resulting in the relative
error around 10−8 between the WBM and the UC substructuring solutions. Therefore, CT = 100 is chosen
as the truncation factor in the following time assessment.

Excitation: corner (2,2)

Response: corner (3,3)

Figure 11: The finite metamaterial structures composed of 5 × 5 UCs. The plate is excited by a single unit
normal point force.
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Figure 12: FRF (a), relative errors over the frequency (b) computed for the clamped finite plate assembly of
5× 5 UC ROMs considering different truncation factors.

4.3 Overview of the study cases

In order to perform the time assessment, the point-to-point FRF in the frequency range 0:2:1000 Hz is
calculated for four cases using the WBM and the UC substructuring method: finite metamaterial structures
composed of 5× 5, 10× 10, 20× 20, 30× 30 UCs as shown in Fig.13. The FOM solution is solved in the
frequency range 0:50:1000 Hz, which serves as the reference to verify the accuracy of both approaches. For
the WBM and the UC substructuring method, the UC FE model is composed of 114 quadratic hexahedral
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elements and reduced with 30 interior modes and 50 interface modes. For the WBM, the truncation factor
CT is set as 100 to include all of the wave functions.

Excitation: corner (2,2)

Response: corner (3,3)

(a) (b) (d)(c)

Excitation: corner (4,4)

Response: corner (6,6)

Excitation: corner (8,8)

Response: corner (12,12)

Excitation: corner (12,12)

Response: corner (18,18)

Figure 13: The finite metamaterial structures composed of 5× 5, 10× 10, 20× 20, 30× 30 UCs. The plates
are all excited by a single unit normal point force.
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Figure 14: FRF calculations and relative error for each reduced model of finite structures of 5×5 (a), 10×10
(b), 20× 20 (c), 30× 30 (d) UCs.

In Fig.14, the accuracy and the computation time of the FRF calculations using the WBM and the UC
substructuring method are shown for the considered cases. Following [13], the assembled matrix using
the substructuring method is reduced with a global modal reduction using respectively 200, 1000, 5000
and 12000 global normal modes for the increasing plate sizes as well as a static enrichment vector for the
applied point force during the offline calculation and finally the FRF can be efficiently solved on the reduced
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matrix for any arbitary frequency resolution as the online phase. The FRF curves for all cases clearly show
the stop band between 597 Hz and 656 Hz which leads to strong vibration attenuation as expected for
this metamaterial design [21]. The error over the frequency range on the right hand side indicates that the
WBM achieves the same accuracy as the UC substructuring method. In particular, the WBM performs better
around the stop band than the other method, as the truncated global eigen-modes used in the substructuring
approach has difficulty to efficiently approximate the forced response at the superposed anti-resonance of a
large number of UCs.

4.4 Time assessment

A summary of the model size and the computation time needed are given in the Tab.2 and the Tab.3. With
increasing plate size, the resulting reduced model dimensions become smaller using the WBM as compared
to the UC substructuring method. Computation time is obtained using an Intel Xeon Gold 6140 Processor
with 192 GB RAM and 18 cores. The scaling property of both methods is estimated using the asymptotic
computational complexity. By assuming that the computation time T is a polynomial function of the number
of the FOM DOFs N , then the leading term dominates as N grows large enough: T ∼ O(Np). The index
p is approximated through a linear fit between log(T ) and log(N). Using the computation time recorded in
the Tab. 3, the scaling index p for the WBM and the UC substructuring method is estimated as 1.38 and 2.17,
respectively. Whereas for smaller plate assemblies the UC substructuring method outperforms the WBM
in terms of model size and computational time, the WBM scales more favorably and outperforms the UC
substructuring method for larger finite plate assemblies.

Table 2: Model sizes of the WBM and the UC substructuring method.

Model WBM UC substructuring method
5× 5 UCs 2060 201
10× 10 UCs 4120 1001
20× 20 UCs 8240 5001
30× 30 UCs 12360 12001

Table 3: Computation time of the WBM and the UC substructuring method.

Model WBM UC substructuring method
5× 5 UCs 124.4 s 21.7 s
10× 10 UCs 2229.0 s 371.3 s
20× 20 UCs 9270.9 s 8318.7 s
30× 30 UCs 19121.8 s 53315.6 s

5 Conclusion

In this paper, the WBM was investigated and applied to build efficient ROMs for two dimensional periodic
structures by taking full advantage of the periodicity. This approach approximates the solution using a linear
superposition of the waves, which can be cheaply calculated on a single UC, while conventional model
reduction approaches need to directly deal with the assembled matrix of the global structure. Compared with
the UC substructuring method, this approach achieves similar accuracy and shows a favorable scaling in
both computation time and model size for the assembly of large numbers of UCs due to a favorable growth
rate. Although the growth rate of the computational effort of the WBM is lower, it should be pointed out
that the ROM of the WBM is built at every frequency value of interest. Therefore, it is expected that the
computation time of the WBM grows linearly with an increasing frequency resolution, while that of the UC
substructuring method is independent of the frequency resolution as the ROM is built once for all frequency
values. To overcome this problem, a fast frequency sweep technique will be incorporated in future work.
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(a) (b)

Figure 15: Model size (a) and computation time (b) of the WBM and the UC substructuring method for
growing FOM sizes.
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