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Abstract
The main drawback of the Operational Modal Analysis (OMA) approach consists in the natural excitation
(NExT) assumption of uncorrelated white noise excitations. These hypotheses are violated in all those cases
in which the exerted environmental loads exhibit colouration, harmonic content or some kind of correlation,
with regards to mechanical engineering systems like vehicles during road tests or operating wind turbines.
Specifically, we propose a generalized OMA framework with the aim to overcome this limitation. The
generalized modal structures of the output power spectral densities (PSDs) are derived, as models showing
the dependence not only by the modal parameters, but also by the input spectral characteristics, and employed
in a customized identification technique. The proposed formulation is compared with the classical one, by
performing modal parameter estimation of an experimental slender beam under operating loading conditions,
comprising a number of NExT assumption infringements.

1 Introduction

The NExT assumption is often valid in case of civil engineering structures like buildings, bridges, and towers
because they are mainly excited by seismic micro-tremors, wind or traffic, which are faithful to the statis-
tical description of stationary Gaussian uncorrelated white noises. By dealing with mechanical engineering
structures, the operational environment could offer ambient forces which infringe classical OMA hypothesis
due to the presence of harmonic components (from moving/rotating parts of the machine like gears, shafts,
couplings, reciprocating piston in pumps and engines, etc.), non-white excitation [1] (e.g. forces induced on
vehicles by road surface roughness [2, 3, 4, 5, 6], wind speed fluctuation, i.e. turbulence, in wind turbines
[7]), the existence of temporal and/or spatial correlation between loads (as the wheelbase filtering effect in
vehicle dynamics [8, 9, 10]), and time periodic effects in rotating systems [11]. These aspects can give rise to
OMA methods’ failures: for instance, harmonic components may be identified as spurious resonance modes
(also called operational modes) or they can affect the estimation of modal parameters, especially resulting
in poor damping ratio estimations. Many approaches have been proposed over the years to address this lack
of description in OMA [12]: (i) statistics-driven identification of harmonics where statistical measurement
known as probability density function and kurtosis are used to determine whether a peak in a spectrum is
an operational or natural mode [13]; (ii) removal of harmonic components from the signal in pre-processing
stage [14, 15, 16]; (iii) explicit incorporation of the harmonic component in existing OMA methods for the
identification of modal parameters, assuming a prior knowledge of the harmonic frequencies [17, 18]; (iv)
input spectrum independent techniques, such as the transmissibility-based OMA (TOMA) and polyreference
TOMA (p-TOMA) [19, 20], which handle the problem when ambient excitation is not white. In addition,
a hybrid approach using elements of both EMA and OMA was proposed by [21] called OMAX (i.e. Op-
erational Modal Analysis in presence of eXogenous inputs): it is based on a system model that takes both
the measured and the ambient excitation into account directly to the measured signals [22, 23]. In the recent
years, the development of methods aiming at overcoming the NExT assumption limitations has become a
challenging topic [24, 25, 26]. Looking for a method suitable mechanical application such as vehicle systems
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running on a straight road with a constant speed and rotating wind turbines [27], authors started to modify
the classical OMA methods to achieve specialized techniques or they introduced specific transformations
as a data pre-processing aimed at extending operational modal analysis to linear, periodically time-varying
systems. Time periodic effects in wind turbines might arise due to interaction between the flow around the
blade and tower or variation in the wind speed with altitude. Forward Coleman transformation (also called
multi-blade coordinate transformation, MBC) or harmonic transfer function concept [28] is, for instance,
applied to the data measured on the wind turbine blades, then combined with tower responses, in order to
apply Operational Modal Analysis to the transformed data. Furthermore, an analytical expression for the
output spectrum in terms of the modal parameters was developed and used to interpret the spectra [11].
Analogously, the idea to perform OMA on vehicles during road tests is prevented by some other infringe-
ments of the NExT assumption [29]. In fact, a certain correlation among the road forces acting on the wheels
arises: different kinds of correlation exist which describe relation between loads on the front and the rear
axle, or inputs on wheels belonging to the left and the right side [10]. This aspect, combined with typical
high damped rigid body modes, make challenging the application of standard OMA algorithms. In [30], the
smooth orthogonal decomposition, SOD, method is extended to the modal parameter estimation (MPE) of
lightly damped systems, in which the inputs are time shifted functions (i.e. temporal correlated) of white
noise signals. This approach has been proposed to identify the modal parameters of a vehicle during road
testing, but, although the assumption of time correlated inputs is well addressed, relatively inaccurate re-
sults have been obtained owing to the drawbacks of time-domain techniques when treating highly damped
systems. On the other hand, in [31] vertical accelerations of unsprung masses are used as inputs for sub-
space identification, giving comparably accurate results with the subspace identification method using tyre
forces as inputs. Recently, a specialised modal model, referred to as the Track-Vehicle Interaction Modal
Model (TVIMM), able to incorporate the character of road/rail inputs acting on vehicles during operation, is
developed together with a method for determining the modal parameters of road and rail vehicles [32, 33].
The idea, behind the hereby called generalized OMA (G-OMA), consists in overcoming a number of NExT
assumption infringements by including a priori known input correlation features in the OMA modal struc-
tures [34, 35]. In this sense, an analytical description of these effects (such as coloration, time correlation,
spatial coherence, etc.) is needed and explicated in the models employed by the identification techniques.
This way, it is possible to perform “ad hoc” procedures, even in case of completely violation of the classical
assumption and still not measuring forces.

The rest of the paper is organized as follows. In Section 2, the theoretical background of G-OMA is presented
regarding the modal model of the output PSD matrix and the two step identification strategy is supplied. In
Section 3 an experimental case study is exploited evaluating the performance of the G-OMA procedure with
respect to the classical OMA approach. Finally, Section 4 summarizes the main conclusions of this work.

2 No-NExT OMA

By considering a linear, time-invariant, damped, vibrating system having N degrees of freedom (dofs), the
relevant system transfer function matrix is defined as the inverse of the dynamic stiffness B(s)

H(s) = (s2M+ sC+K)−1 = B(s)−1, (1)

with s the Laplace variable, M, C, and K ∈ RN×N are the mass, damping, stiffness matrices. From the
modal analysis theory [36], the modal decomposition of the frequency response function matrix, FRF, is

H(iω) =
N∑

n=1

ψnL
T
n

iω − λn
+
ψ∗

nL
H
n

iω − λ∗n
=

2N∑

n=1

ψnL
T
n

iω − λn
, (2)

where a translate into the Fourier domain is done by imposing s = iω, with λn and ψn ∈ CN×1 as the
system poles and mode shapes, and Ln = Qn

[
ψ1,n · · · ψL,n

]
∈ CL×1 indicating the modal participation

vector related to the n-th pole containing the L components of the n-th mode shape where the L external
forces act (Qn = 1/man is referred as scale factor).
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2.1 Classical PSD modal model

The power spectral density (PSD) matrix Sq(iω) ∈ CN×N referred to the system outputs can be evaluated
by using the following implicit analytical expression, the well-known input-output formula, holding in the
frequency domain [37]

Sq(iω) = H(iω)Sf (iω)H(iω)H, (3)

where Sf (iω) ∈ CL×L is the Fourier transform of the input correlation matrix. Substituting in Eq. (3) the
modal decomposition of Eq. (2), one obtains

Sq (iω) =

(
2N∑

n=1

ψnL
T
n

iω − λn

)
Sf (ω)

(
2N∑

m=1

Lmψ
T
m

−iω − λm

)
. (4)

So, from that perspective, the assumption of inputs as white uncorrelated noises,i.e. the NExT hypothesis,
here becomes

Sf (iω) =



α1 · · · 0
...

. . .
...

0 · · · αL


 , (5)

with αi a real-valued constant, implying the following partial fraction decomposition the matrix in Eq. (4)

Sq (iω) =
2N∑

n=1

R+
n

iω − λn
+

R−
n

−iω − λn
, (6)

where the resulting residue matrix is
R+

n (iω) = ψnρ
T
n , (7)

and the definition of operational reference vector coming up again as

ρn(iω)
T = LT

nS
f (iω)

(
2N∑

m=1

Lmψ
T
m

−λn − λm

)
=

L∑

g=1

αgg
gg
n

T, (8)

with

gggn =
ψgn

man

2N∑

m=1

ψgm

mam (−λn − λm)
ψm, (9)

Therefore, by assuming the operational forces to be white noise uncorrelated sequences, the output PSD
matrix Sq(iω) can be modally decomposed as follows [38]:

Sq (iω) =
2N∑

n=1

ψnρ
T
n

iω − λn
+

ρnψ
T
n

−iω − λn
, (10)

where the operational participation vectors (ORV), Eq. (8), result being a combination of the system modal
parameters and the unknown (i.e. forces are not measured) input correlation terms. For this reason, the
modal participation factors and by consequence the modal scale factors cannot be determined from a single
OMA test but they need appropriate methods for scaling [39].

Usually, the so-called positive power spectra are employed in the output-only identification techniques for
their algebraic similarity to FRFs [40]. Indeed, positive power spectra matrix is defined as the Fourier
transform of the causal part of the correlation matrix resulting

Sq+ (iω) =

2N∑

n=1

ψnρ
T
n

iω − λn
, (11)
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or in a compact form
Sq+ (iω) = Ψ(iωI−Λ)−1GT, (12)

with the 2N ORV collected in G ∈ CN×2N , representing a modal decomposition similar to that of Eq. (2)
except for the definition of operational reference vectors ρn.

2.2 Generalized PSD modal model

In a similar fashion but without making any assumption on the particular structure of Sf (iω), the output PSD
matrix of Eq. (4) can be written in partial fraction by means of the following decomposition [41]

Sq (iω) =

2N∑

n=1

R+
n (iω)

iω − λn
+

R−
n (iω)

−iω − λn
, (13)

where the residue referred to the n-th pole is expressed by

R+
n (iω) = ψnρn(iω)

T, (14)

in which the vector ρn(iω)
T is defined as

ρn(iω)
T = LT

nS
f (iω)

(
2N∑

s=1

Lsψ
T
s

−λn − λs

)
=

=

2N∑

s=1

LT
nS

f (iω)
Lsψ

T
s

−λn − λs
=

2N∑

s=1

L∑
g=1

Lg,n

L∑
l=1

Sf
gl (iω)Ll,s

−λn − λs
ψT

s =

L∑

g=1

L∑

l=1

Sf
gl (iω) g

gl
n
T
,

(15)

where the extended operational reference vector ggln , related to the input correlation matrix entry Sf
gl(iω),

occurs as

ggln = Lg,n

2N∑

s=1

Ll,s

−λn − λs
ψs. (16)

Analogously, you notice that

R−
n (iω) =

(
2N∑

s=1

ψsL
T
s

−λn − λs

)
Sf (iω)Lnψ

T
n =

=




2N∑

s=1

ψs

L∑
g=1

Lg,s

L∑
l=1

Sf
gl (iω)Ll,n

−λn − λs


ψ

T
n =

=




L∑

g=1

L∑

l=1

Sf
lg (−iω)Ll,n

2N∑

s=1

Lg,s

−λn − λs
ψs


ψT

n =

=




L∑

l=1

L∑

g=1

Sf
lg (−iω) glgn


ψT

n = ρn (−iω)ψT
n ,

(17)

and thus Eq. (13) can be written as

Sq (iω) =
2N∑

n=1

ψnρn(iω)
T

iω − λn
+
ρn (−iω)ψT

n

−iω − λn
. (18)
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In the following, ggln is referred to as the extended operational reference vectors (eORV) related to the r-
th pole and the gl-th entry of matrix Sf (iω), while ρn(iω) is called frequency dependent ORV (ω-ORV).
Similar to the classical operational reference factors, these quantities do not represent a scale factor for
the modal shape. The modal decomposition in Eq. (18) can be called the generalized PSD modal model.
Differently from the classical PSD modal model, the dependency on the input PSD functions is clarified and
no assumptions about the inputs are used to achieve the formulation.

2.3 MPE technique: a two step approach

In the previous section, the modal decomposition of the output PSD matrix is derived referring to a linear,
time-invariant, damped, vibrating system havingN dofs and subjected to L external forces. If you generalize
to the the multi-input, multi-output, and multi-mode case, Eq. (18) can be written into matrix notation as

Sq (iω) = Ψ(iωI−Λ)−1P(iω)T +P(−iω)(−iωI−Λ)−1ΨT, (19)

where Sq(ω) ∈ Co×r relates o outputs and r references, Λ ∈ C2Np×2Np is a diagonal matrix, containing the
2Np complex conjugate system poles λn in the frequency band of interest, while Ψ ∈ Co×2Np collects the
mode shape vectors and P(iω) ∈ Cr×2Np gathers together the ω-ORV being

P(iω) =
L∑

g=1

L∑

l=1

Sf
gl (iω)Ggl, (20)

with the 2Np eORV collected in Ggl ∈ Cr×2Np . The output PSD matrix could be considered as Sq(iω) =

S̃q(iω)+ S̃q(iω)H, where S̃q(iω) indicates the part of the PSDs related to stable poles. The equivalent matrix
polynomial model in the z-domain is derived as

Sq(ωk) = D(k)−1N(e)(k), (21)

with N(e)(k) =
L∑

g=1

L∑
l=1

Sf
gl(ωk)N

gl(k) ∈ Co×r here called extended fitting polynomial numerator matrix

and D(k) ∈ Co×o the denominator matrix, whose coefficient matrices represent the parameters to be es-
timated. Specifically, N(e)(k) definition incorporates several a-priori known features resulting from loads
which explicitly violate the NExT assumption, such as coloured noises, time and spatial correlation among
multiple inputs, presence of deterministic loads such as harmonics. One can easily demonstrate how the
description in Eq. (21) collapses in the classical LMFD description [40] by imposing the associated to the
NExT hypothesis. The polynomial coefficient estimation problem of Eq. (21) can be solved, in a Least-
Square sense, with the poly-reference version of the LSCF estimator that differs from the classical one [42]
because of the particular matrix description which includes the definition of an extended fitting polynomial
numerator matrix N(e)(ωk). Once one determines poles and mode shapes, the remaining unknowns can be
estimated with a Least-Squares Frequency-Domain estimator (LSFD) minimizing the scatter between the
estimated PSD matrix Sq (iω) and the modeled one by exploiting Eq. (19).

3 Applications

In order to validate the two steps MPE procedure previously described, a test case is exploited characterized
by a particular the correlation input matrix Sf (iω). Considering the case of two external loads, f(t) ∈ R2×1,
one can generally represent Sf (iω) ∈ C2×2 as

Sf (iω) =

[
S1 (ω) Γ (ω)

√
S1 (ω)S2 (ω)e

iωτ

Γ (ω)
√
S1 (ω)S2 (ω)e

−iωτ S2 (ω)

]
, (22)
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where Si(ω) is the auto-PSD function referred to i-th force, τ indicates the generic time-lag between two
sources, and Γ(ω) stands for the coherence function classically defined as

Γ (ω) =
|S12 (ω)|√
S1 (ω)S2 (ω)

. (23)

In the offered case study we process the time records collected through real-world experiments of MIMO
environmental testing, performed on a slender beam of known geometry and material properties, shown in
Figure 1. Different infringements of the NExT assumption are investigated by varying the quantities Si(ω),
τ , Γ(ω) of the PSD matrix in Eq. (22), and so studying the effect of colored noise excitation, temporal
correlation and coherence between forces on the OMA procedures. Each of these statistical features is
emblematic of the loading environment in which typical mechanical structures (such as vehicles and wind
turbines) operate, justifying the need to be gradually tackled by employing an entry-level example, i.e. a
discrete system model, and then by approaching an experimental subject. In each application, the first and
second step of the identification procedure are carried out by classical and generalized operational modal
analysis approach. In Table 1, a comparison is set up between the classical OMA procedure (commercially
known as PolyMAX [43]), as a basis for comparison, and the generalized one.

Table 1: Comparison between the two step identification procedures employed in the OMA and G-OMA
approach. In the results line, we indicate the modal parameters coming out from each step.

OMA G-OMA
1st Step pLSCF based on RMFD pLSCF based on eLMFD
MFD Sq+(ωk) = N(k)D(k)−1 Sq(ωk) = D(k)−1N(e)(k)

Results Λ, G Λ, Ψ

2nd Step
LSFD based on

classical half positive PSD modal model
LSFD based on

generalized PSD modal model

Modal model Sq+ (iω) = Ψ(iωI−Λ)−1GT Sq (iω) = Ψ(iωI−Λ)−1P(iω)T+
+P(−iω)(−iωI−Λ)−1ΨT

Results Ψ P(ω)

As one can notice, main differences, regarding the first step, are related to the matrix fraction description
used to describe Sq(ω), which leads to distinct state-space realization resulting in distinct modal role of the
companion matrix eigenvectors (as appreciable in the line of 1st step results). The modal vectors, extracted
from the pLSCF algorithm, also depend upon the choice of polynomial basis functions, zk or z−1

k , which in
turn captures the part of Sq(ω) bound up with stable poles, S̃q(ω), or unstable poles, S̃q(ω)H. In our cases,
the option zk is adopted for both OMA and G-OMA approach. For the experimental case study, positive
power spectra are processed with the classical OMA which still employs the RMFD in Table 1 at the first
identification step but needs a model model like Sq+ (iω) = Ψ(iωI−Λ)−1GT for the LSFD estimator. In the
results discussion, natural frequencies and damping ratios are compared to reference values, the mode shapes
are validated by calculating the relevant MAC with respect to a reference modal vector set, and synthesized
modal models are compared with measured spectra through synthesis correlation coefficients and normalised
errors.

3.1 Experimental case study

In Figure 1, the slender beam used to perform the MIMO environmental testing experiments, is represented.
Specifically, the specimen is a PTFE beam of length, width, and thickness equal to 610mm, 100mm, and
10mm, respectively. We adopt a set-up in which free-free boundary conditions are achieved by suspending
the beam through extremely flexible elastic cords. The beam is forced by exerting random loads through
two modal exciters, acting along the x-direction, attached to the structure through steel stingers and mechan-
ical impedance sensors screw mounted. The output responses are even measured by eight accelerometers,
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attached to the beam’s center-line, as shown in Figure 1, and by two impedance heads at the driving point lo-
cations. These latter sensors also provide the force measurements employed as control signals for the source
driving.

Figure 1: Experimental case study: PTFE beam in free-free boundary conditions. Forces are simulated by
two modal shakers attached by stinger.

The experimental setup is, therefore, composed of (i) eight B&K 4535-B-001 triaxial accelerometers, (ii)
two PCB 288D01 mechanical impedance sensors, (iii) Dongling ESD-045 and GW-V2/PA30E modal shak-
ers, (iv) a LMS SCADAS III SC310-UTP mobile, equipped with DAC shutdown control box, PC based
multichannel analyzer platform, running the LMS Test.Lab 14A software suite for acquiring and recording
the time histories of output and input signals, measured by the accelerometers and the impedance head trans-
ducers. It is exploited the software module designed for environmental testing specifically for multi-axis
random control. By doing so, you are allowed to drive two exciters targeting reference profiles of force
PSDs, Sf

1 (ω) and Sf
2 (ω), including also a reference coherence Γ(ω) and a cross-PSD phase angle ∠Sf

12(ω)

which determine the cross-correlation term Sf
12(ω), as described in Eq. (22). One loading case is explored

represented in Figure 2 which aims at introducing three different infringements of NExT assumption.

(a) Temporal correlation, coloration, and coherence: Sf
1 (ω) = Sf

2 (ω) =
S0

ω2 + ω2
0

, ∠Sf
12(ω) = ωτ , and Γ(ω) = e−α|ω|

Figure 2: Experimental case study: loading case under no-NExT hypothesis. The dotted coloured lines
display quantities derived from impedance head force measurements. On the other hand, black lines show
the chosen target profiles whose analytical expression is reported in captions.

Signals are acquired in the time domain, adopting a sampling frequency, a time period, and a number of
repetitions equal to 800Hz, 4 s, and M = 50, respectively. Figure 3 offers the magnitude of cross-PSD
between the 10th and 5th acceletometer signals, obtained by processing the system responses by means of
the weighted correlogram when a 0.001% exponential window is applied.
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Figure 3: Experimental case study: magnitude of output crossPSD relating the 10th and 5th acceleration
signals. The classical NExT loading case, black line, is compared with the No-NExT loading cases, described
in Figure 2, where temporal correlation, coloration, and coherence between forces is introduced, red line.

The time delay between the loads, acting at the 3rd and 9th location, introduces humps in the magnitude of
the cross-PSDs, see the relevant distortion comparing the black line, referred to uncorrelated white noises
case, and the red one, where temporal correlation is reproduced. The coloration effect arises looking at the
energy distribution in frequency. Coherence between the excitations, simulated according to an exponential
law, produces the expected attenuation of humps with increasing frequency.

Table 2: PTFE beam system: natural frequencies and damping ratios extracted by classical modal analysis
techniques [44].

Natural Frequency (Hz) Damping Ratio (%)
Mode 1 22.1102 1.9463
Mode 2 58.5501 2.0002

Mode 1T 109.655 1.4797
Mode 3 117.967 1.4875

Figure 4: PTFE beam system: mode shapes extracted by classical modal analysis techniques. Blue dots:
underformed nodes; red squares: deformed nodes.

In the following sections, the identification procedure is performed operating in the frequency band 10−160
Hz that contains the first three flexural modes (along with a torsional one, around 110 Hz, which further
emerges in some loading conditions despite sensor and force locations) extracted by classical modal analysis
techniques [44] and collected in Table 2 and Figure 4.

3.1.1 First identification step: pLSCF

The three no-NExT effects here investigated are combined. So, in this loading condition the designed
N(e)(ω) includes the knowledge of the temporal delay τ together with the frequency dependence of col-
oration and coherence models.
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(a) OMA (b) G-OMA

Figure 5: Identification of the experimental system: stabilisation diagram along with the magnitude of the
PSDs sum function, blue dotted line. The model order is indicated on the left ordinate axis. ‘o’: new pole;
‘f’ stabilisation in natural frequency; ‘f’ extra stabilisation in damping ratio; ‘v’ extra stabilisation in MAC
value; ‘s’ full stabilisation. Stabilisation thresholds for natural frequency, damping ratio, and MAC value
are 1%, 5%, and 2%, respectively.

The two stabilisation diagrams in Figure 5 reveal different clarity highlighting the more accuracy of the G-
OMA approach. The effect of coherence is reversed into the presence of a fourth peak, see Figure 5b, related
to the first torsional mode of the PTFE beam, that result more excited when the two loads loose correlation
(as it happens at high frequency due to the effect of the coherence term e−α|ω|). By looking at Figure 5a,
pole selection is still quite challenging due to the stabilisation lines related to spurious mathematical poles
deriving from the violation of the NExT assumption. By forcing selection in correspondence of the expected
natural frequencies for the OMA stabilisation diagram, a comparison of the MPE results is established in
Table 3 and Figure 6. The proposed identification procedure generally offers a better estimation for both
frequencies and damping ratios as confirmed by the error values. Worse results are reached for the less
excited modes, first flexural and torsional ones, because of the measurement noise effect. The MAC values
reveal similar performances in terms of mode shapes estimate and they confirm the poor observability of the
torsional mode related to force and sensor locations.
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Table 3: Comparison between exact and estimated natural frequencies. Estimates computed by using classi-
cal and generalized OMA formulations are compared. Percentage relative error, ∆ = 100×(vref−vest)/vref ,
with respect to reference value is reported nearby each estimate.

Natural Frequency (Hz) Damping Ratio (%)
Estimated |∆|(%) Estimated |∆|(%)

OMA

Mode 1 22.4837 1.6893 5.1303 163.5944
Mode 2 59.0800 0.9050 2.9887 49.4195

Mode 1T 109.5787 0.0696 1.6697 12.8399
Mode 3 117.6550 0.2645 2.0689 39.0821

G-OMA

Mode 1 22.5279 1.8890 0.9353 51.9459
Mode 2 58.8164 0.4548 2.2579 12.8852

Mode 1T 110.0922 0.3987 1.0549 28.7080
Mode 3 117.9556 0.0097 1.3484 9.3519

1 2 3 4

1

2

3

4

0.990

0.008

0.001

0.017

0.004

0.999

0.006
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0.000

0.011

0.965

0.944

0.014

0.003

0.903

0.998
0.2

0.4

0.6

0.8

(a) OMA

1 2 3 4

1

2

3

4

0.984

0.003

0.001

0.014

0.003

0.999

0.006

0.001

0.003

0.010

0.987

0.861

0.013

0.004

0.905

0.997
0.2

0.4

0.6

0.8

(b) G-OMA

Figure 6: MAC between reference and estimated modal vectors’ sets estimated by following (a) the classical
OMA procedure and (b) the generalized approach proposed in the paper.

3.1.2 Second identification step: LSFD

This last loading case is characterized by the frequency-dependent operational reference vector ρn(iω) which
embeds some a priori known features regarding input correlation and coloration, such as the temporal delay
τ and the frequency dependence of coloration and coherence models. It is highlighted the suitability of the
G-OMA method emphasised by low errors, below 5%, and high correlation coefficients, greater than 95%,
as confirmed by the visual match in Figure 7(b). Furthermore, the classical LSFD shortcomings relapse into
slightly greater errors, whereas the poles’ selection is enforced having poor stabilization charts.
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(a) OMA (b) G-OMA

Figure 7: Experimental beam under temporal-correlated colored coherent noises: (a) comparison between
one measured positive power spectrum, blue dotted line, and the relevant synthesis obtained by the OMA
modal model, red solid line; (b) G-OMA modal model synthesis, green solid line, of one measured output
PSD, blue dotted line. The chosen matrix entry relates the 10th and 5th accelerations in the both plots.

4 Conclusions

This work outlines the development of a generalized OMA framework, meaning an alternative approach
aiming at overcoming the NExT assumption limitations, which occur when output-only modal analysis is
performed on mechanical system, such as vehicles during road test or operating wind turbines. The G-OMA
approach is designed to fix no-NExT effects (i.e. coloration, time correlation, coherence, harmonics, etc.) by
including a priori known input correlation features in OMA modal structures. In fact, a generalized modal
decomposition of CFs and PSDs matrix is clarified by making no assumptions about the forces correlation.
In doing so, the concept of frequency (or time lag) dependent operational reference vectors arises as a class
of modal vectors which in turn collects a combination of several contributions related to the forces acting
on the system. Moving from the theoretical generalized PSD partial fraction decomposition, a specific two
step identification procedure, operating in the frequency domain, is developed. The first step, resulting in
poles and mode shapes estimation, is based upon an extended left matrix fraction description and its relevant
state-space observable canonical realization. The second step is an LSFD-based estimator operating on the
extended operational reference vectors calculation. The investigated no-NExT effects are the coloured na-
ture of stochastic loads, the presence of temporal correlation and coherence between inputs. The proposed
formulation is compared with the classical one by performing modal parameter estimation of an experi-
mental PTFE beam under different operating loading conditions, comprising a number of NExT assumption
infringements. The suitability of the G-OMA method is confirmed by improved results in terms of stabili-
sation diagram and modal parameters accuracy. The usage of identification techniques, based on the modal
structures here proposed, could inspire simple and cost-effective “ad hoc” tools able to compute the modal
parameters of mechanical systems under operating conditions that violate to a certain extent the hypothesis
of the classical OMA techniques.
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