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Abstract
Substructure decoupling allows identifying the unknown dynamic behavior of a subsystem starting from the
dynamic behavior of both the whole system and the residual part of the system. Substructuring techniques
were originally developed to deal with invariant systems. The feasibility of performing substructure de-
coupling when the coupling conditions among invariant mechanical subsystems are configuration-dependent
was recently investigated. Typical examples of such systems could be a lifting crane or a cartesian robot.
In principle, when the unknown subsystem is identified by performing substructure decoupling on different
configurations of the assembled system, one would expect to get the same solution. In practice, this is not
true because the decoupling problem may be affected by ill-conditioning that depends on the configuration
of the assembled system. In this work, the redundancy of information provided by multiple solutions is
exploited through different strategies to reduce the effects of ill-conditioning.

1 Introduction

When a complex dynamic system ideally composed by a set of connected subsystems is considered, sub-
structure decoupling allows identifying the unknown dynamic behavior of a subsystem starting from the
dynamic behavior of both the whole system and the residual part of the system. Substructuring techniques
were originally developed to deal with invariant systems [1, 2, 3, 4].

In a recent work [5], the authors investigated the feasibility of performing substructure decoupling when the
coupling conditions among invariant mechanical subsystems are configuration-dependent. Typical examples
of such systems are a lifting crane or a Cartesian robot. The dynamic behavior of the whole system must be
known for each configuration, but it is assumed that only coupling conditions are configuration dependent,
i.e. the component subsystems are invariant. Therefore, the use of multiple configurations can provide a more
rich set of information that can improve the identification of the unknown (invariant) subsystem. Moreover,
in substructure decoupling it is not required to know the dynamic behavior of the assembled system at the
connecting DoFs between the component subsystems [6, 7].

On the contrary, the classical coupling problem in the framework of experimental dynamic substructuring
always requires to know the dynamic behavior of the subsystems to be coupled at the connecting DoFs, either
directly or using reduction techniques or introducing additional subsystems [8, 9, 10]. Also the coupling
problem can be considered for configuration dependent systems [11, 12, 13, 14]: this allows to investigate
friction-induced vibrations in the framework of dynamic substructuring [15, 16].

Going back to configuration-dependent substructure decoupling, the results [5] showed that it is possible
to identify an appropriate set of measuring points, which allows both to avoid taking measurements on the
coupling points and to use a single set of measured FRFs on the residual subsystem. In principle, when
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the unknown subsystem is identified by performing substructure decoupling on different configurations of
the assembled system, one would expect to get the same solution. In practice, this is not true because the
decoupling problem may be affected by ill-conditioning or by specific noise sources that depends on the
configuration of the assembled system [2, 3, 7, 17, 18].

In this paper, different strategies are conceived to exploit the redundancy provided by the multiple solutions,
obtained by solving the decoupling problem in different configurations. Results are obtained starting from
simulated noise polluted FRFs on a well known test bed [6, 7].

2 Decoupling of structural system with multiple configurations

Typically, substructure decoupling allows identifying the unknown dynamic behavior of a subsystem, starting
from the dynamic behavior (e.g., FRFs) of the assembled system RU and that of a known portion of it, the
so-called residual subsystem R. A set of coupled systems made by a pair of invariant substructures joined
at different DoFs is considered. Each coupled system in the set is defined as configuration. For a given
configuration χ, the unknown substructure U (NU DoFs) is joined to the residual substructure R (NR DoFs)
by nc coupling DoFs through which constraint forces (and moments) are exchanged (see Figure 1). The
degrees of freedom of each assembled structure (NRU DoFs) can be partitioned into coupling DoFs (c),
internal DoFs of substructure U (u) and internal DoFs of substructure R (r), that are generally different for
each configuration χ.

Internal DoFs r

Coupling DoFs c

Internal DoFs u

Figure 1: Assembled system RU , with the unknown subsystem U (green) and the residual subsystem R
(blue).

Assembled
system RU � Internal DoFs r

Coupling DoFs c

Residual
subsystem R

=

Coupling DoFs c

Internal DoFs u

Unknown subsystem U

Figure 1: Scheme of the direct decoupling problem.

R. The dynamic behaviour of the unknown substructure U can be extracted71

from that of the assembled structure RU by taking out the dynamic e↵ect72

of the residual subsystem R. This can be accomplished by considering a73

negative structure, i.e. by adding to the assembled structure RU a fictitious74

substructure with a dynamic sti↵ness opposite to that of the residual sub-75

structure R and satisfying compatibility and equilibrium conditions. The76

dynamic equilibrium of the assembled structure RU and of the negative sub-77

structure is expressed in block diagonal format as:78
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where:79

• ZRU, �ZR are the dynamic sti↵ness matrices of the assembled struc-80

ture RU and of the negative structure, respectively;81

• uRU , uR are the vectors of degrees of freedom of the assembled struc-82

ture RU and of the negative structure, respectively;83

• fRU , fR are the external force vectors on the assembled structure RU84

and on the negative structure, respectively;85

• gRU , gR are the vectors of disconnection forces exchanged between86

the assembled structure and the negative structure (constraint forces87

associated with compatibility conditions).88

Compatibility and equilibrium conditions must be considered at the in-89

terface between the assembled structure RU and the negative structure: such90

4

Figure 2: Scheme of the direct decoupling problem.
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The FRFs of the unknown subsystem U can be predicted from those of a given assembled system RUχ by
subtracting the dynamics of the residual subsystem R. This is accomplished by adding to a given assem-
bled system RUχ a fictitious subsystem (negative structure) with a dynamic stiffness opposite to that of the
invariant residual subsystem R (see Figure 2). The effect of the negative system is to add disconnection
forces (and moments) to the external forces acting on the assembled system RUχ to uncouple the unknown
subsystem from the assembled system.

The dynamic equilibrium of a given assembled system RUχ is expressed as:

ZRUχ uRUχ = fRUχ + gRUχ (1)

where gRUχ is the vector of disconnection forces applied to the given assembled system by the negative
subsystem, ZRUχ is the dynamic stiffness matrix of the given assembled system RUχ, uRUχ is the vector of
degrees of freedom of the given assembled system RUχ, fRUχ is the external force vector on the assembled
system RUχ.

Similarly, the dynamic equilibrium of the negative subsystem is expressed as:

− ZRuRχ = fRχ + gRχ (2)

where −ZR is the dynamic stiffness matrix of the invariant negative subsystem, and uRχ , fRχ , gRχ are defined
as for the assembled system.

2.1 Possible sets of interface DoFs

The DoFs on which the disconnection forces are acting constitute the set of interface DoFs. This set is not
unique even for a given configuration χ [6].

Equations (1-2) can be coupled to obtain the unknown subsystem U , by enforcing the following constraints:
disconnection forces gRUχ and gRχ must be in equilibrium, and compatibility between degrees of freedom
uRUχ and uRχ must hold at the interface between the assembled system RUχ and the negative subsystem.

A possible set of disconnection forces trivially consists of forces and moments acting at the coupling DoFs
and opposite to the constraint forces and moments (see Fig. 3), giving rise to the:

• standard interface, including only the coupling DoFs (c) between subsystems U and R.

Disconnection forces

Figure 3: Trivial set of disconnection forces (and moments) acting on the assembled structure (corresponding
to the standard interface).

It is possible to consider also non trivial sets of disconnection forces, acting at different DoFs but still able to
cancel the constraint forces and moments at the coupling DoFs (see Fig. 4). Therefore, several other options
for interface DoFs can be considered:
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• extended interface, including also a subset of internal DoFs (i ⊆ r) of subsystem R;

• mixed interface, including subsets of coupling DoFs (d ⊂ c) and internal DoFs (i ⊆ r), e.g. those
corresponding to the disconnection forces in Fig. 4 (left);

• pseudo interface, including only internal DoFs (i ⊆ r) of subsystem R, e.g. those corresponding to
the disconnection forces in Fig. 4 (rigth).

Figure 4: Non-trivial sets of disconnection forces corresponding to a mixed interface (left) and to a pseudo
interface (right).

In any case, the number of interface DoFs must be not less than the number of coupling DoFs nc. The use
of a mixed interface can be useful to replace rotational coupling DoFs with internal DoFs, whilst the use of
a pseudo interface allows to replace all the coupling DoFs with translational internal DoFs.

2.2 Compatibility and equilibrium for a given configuration

Compatibility at the (standard, extended, mixed, pseudo) interface implies that any pair of matching DoFs,
i.e. DoF l on the coupled system RUχ and DoF m on subsystem R, must have the same displacement, that
is uRUl − uRm = 0. Let Sχ be the set of Nχ interface DoFs on which compatibility is enforced.

For a given configuration χ, the compatibility condition can be generally expressed as:

Bχuχ = 0 where uχ =

{
uRUχ
uRχ

}
(3)

where Bχ has size Nχ × (NRU +NR) and each row corresponds to a pair of matching DoFs.

The equilibrium condition can be enforced on the same set Sχ of Nχ interface DoFs used for compatibility
condition [3]. The equilibrium condition implies that the sum of disconnection forces on any pair of matching
DoFs must be zero that is gRUl + gRm = 0. Furthermore, for any unmatched DoF k on the coupled system
RUχ (or on the residual subsystem R), it must be gRUk = 0 (gRk = 0). Altogether, the previous conditions
can be expressed as:

LTχgχ = 0 where gχ =

{
gRUχ
gRχ

}
(4)

where Lχ is a localization matrix and has size (NRU +NR)× (NRU +NR −Nχ).

2.3 Formulation of the decoupling problem for a given configuration

The problem to be solved is mathematically built by gathering Eqs. (1-4). The solution is obtained using a
dual assembly [8, 2] where equilibrium is satisfied exactly by defining a unique set of disconnection force
intensities but compatibility could not be ensured.
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In the dual assembly, the total set of DoFs is retained, and the equilibrium condition gRUr + gRs = 0 at a
pair of matching DoFs is ensured by choosing gRUr = −λr and gRs = λr. Therefore, the overall interface
equilibrium can be ensured by writing the disconnection forces in the form:

gχ = −BT
χλχ (5)

where λχ is a vector of Lagrange multipliers corresponding to disconnection force intensities.

Since there is a unique disconnection force intensity λr for any pair of equilibrium DoFs, Eq. (4) is satisfied
automatically for any λχ.

Therefore, Eqs. (1–3) become, after substituting Eq. (5) into Eqs. (1–2) recast in matrix form:



Zχuχ +BT

χλχ = fχ

Bχuχ = 0

(6)

(7)

where Zχ is obtained by gathering the dynamic stiffness of the assembled system and that of the residual
subsystem in block diagonal format as diag(ZRUχ ,−ZR), and fχ is defined similarly to gχ in Eq.(4).

To obtain the disconnection force intensities λχ, displacements uχ can be obtained from Eq. (6) and substi-
tuted into Eq. (7). Then, by defining the FRF block diagonal matrix:

Hχ = Z−1
χ =

[
HRU
χ 0

0 −HR

]
(8)

the vector of disconnection force intensities λχ is found as:

λχ =
(
BχHχB

T
χ

)−1
BχHχfχ (9)

The FRF of the unknown subsystem U can be obtained by back-substituting λχ in Eq. (6), and by isolating
uχ at the left hand side:

uχ =
(
Hχ −HχB

T
χ

(
BχHχB

T
χ

)−1
BχHχ

)
fχ (10)

which is in the form uχ = H̃χfχ, so that the FRF of the unknown subsystem HU
χ is a portion of:

H̃χ = Hχ −HχB
T
χ

(
BχHχB

T
χ

)−1
BχHχ (11)

In fact, when using the dual assembly, the rows and the columns of H̃χ corresponding to compatibility
and equilibrium DoFs appear twice. Furthermore, when using an extended, mixed or pseudo interface, the
rows and columns of H̃χ corresponding to the internal DoFs of the residual substructure R are meaning-
less. Therefore, only meaningful and independent entries are retained in HU

χ . In Eq. (11), the matrix to be
inverted is known as interface flexibility matrix; it depends on the choice of interface DoFs and it can be
ill-conditioned for some set of interface DoFs.

2.4 Taking full advantage of different configurations

Since the unknown subsystem is the same in any configuration, HU
χ should remain the same as the configura-

tion changes. Although this is true in principle, in practice some differences can arise due to both numerical
issues and noise in experimental FRFs. The different solutions can be exploited to gain a better understand-
ing of the dynamic behavior of the unknown subsystem. Several approaches are possible to take advantage
of the redundancy of solutions:

• Observation and assessment

• Averaging
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2.4.1 Observation and assessment of different solutions

The decoupling problem can be solved independently for each configuration of the coupled system, following
the classical decoupling approach outlined in section 2.3. If the same pseudo interface is considered for all
configurations, the same set of measurement of the residual structure can be used. Often, when dealing
with experimental measurements, the noise can affect in different way the quality of the decoupling results.
Sometimes, it is possible to observe high scatter only in some solutions and in limited frequency bands.
Having multiple solutions, one could consider only the best results in each frequency band. However when
it is not easy to identify the best results, methods not relying on individual judgment are also necessary.

2.4.2 Arithmetic average

The decoupling solutions obtained using different configurations can be put together by performing an arith-
metic average of the FRFs of the unknown substructure:

HU =
1

N

N∑

χ=1

HU
χ (12)

2.4.3 Weighted average

A careful observation of the solutions obtained using different configurations might suggest that the FRFs of
the unknown susbsystem should be averaged using weights that depend on the quality of the FRF:

HU (ω) =

N∑

χ=1

wχ(ω)H
U
χ (ω) (13)

A high value of the scatter γχ(ω) of each FRF can be used as an indicator of the low quality of the solution
in the neighborhood of each frequency. Therefore, the weight wχ(ω) is defined in order to be inversely
proportional to the scatter and is normalized so that

∑
χwχ(ω) = 1:

wχ(ω) =
γ−1
χ (ω)

N∑

χ=1

γ−1
χ (ω)

(14)

The scatter level γχ around a given frequency ω can be evaluated using the moving variance, computed over
a short sliding window of k frequency samples. The scatter of several quantities can be observed, e.g., the
log modulus, the phase, or the complex value of the FRFs. More specifically, the following quantities are
considered here to estimate the scatter:

• logarithm of the FRF modulus:
γχ(ω) = σ̃2k

(
log
(
|Hχ(ω)|

))
(15)

where σ̃2k(g(ω)) represents the moving variance of the function g(ω) using a sliding windows of k
frequency samples.

• logarithm of the complex value of the FRF:

γχ(ω) = σ̃2k

(
log
(
Hχ(ω)

))
(16)

With this approach results are similar to those obtained with the logarithm of the FRF modulus.
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• phase of the FRF:
γχ(ω) = σ̃2k

(
ϕ
(
Hχ(ω)

))
(17)

3 Model and results

In order to investigate how to take advantage of configuration dependent substructure decoupling, a previ-
ously introduced [6] test bed is considered. The assembled system consists of a cantilever beam with two
short arms (the residual subsystem R) bolted to a beam (unknown subsystem U ), shown in Figure 5. The
joint involves both translational and rotational DoFs. The cross section is 40 mm×8 mm for all beams, with
the short side along the z-direction. The subsystem geometrical dimension are shown in Table 1(a).

Three different configurations of the assembly are obtained by connecting the residual and the unknown
subsystems at three different points. Figure 6 shows the configurations of the assembly considered in this
paper and Table 1(b) shows the configuration dependent geometrical dimensions. Furthermore, Table 2 lists
the coupling and the internal DoFs for the considered configurations.

d
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a
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6
R 12 13 14 15 16 17 18 19 20 21

22
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y

U

Figure 5: Sketch of the residual subsystem R (left) and of the unknown subsystem U (right).

Table 1: Geometrical dimensions [mm]

(a) Invariant dimensions

a b c d l

540 420 60 100 600

(b) Configuration-dependent dimensions

Configuration e h

A 240 540
B 240 360
C 180 540

Tu simulate real world data, the FRFs of the assembled systems and of the residual subsystem R, obtained
using the numerical models, are polluted with 0.2% noise.

Figure 7 shows the drive point inertance for DoF 16z of the unknown subsystem U evaluated considering
the three different configurations. The results show that, up to a frequency of about 600 Hz, the dynamics is
consistently estimated by the three considered configuration, but above 600 Hz the estimations show large
discrepancies. Among the three considered configurations of the assembly, the configuration C seems to
provide the less scattered FRF in the frequency band 650–850 Hz.
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Figure 6: Sketch of assembled system in different configurations.

Table 2: Coupling and internal DoFs for the residual R and the unknown U subsystems for the three consid-
ered configurations of the assembly.

Configuration Coupling DoF R Coupling DoF U Internal DoFs R Internal DoFs U
A 11 18 1:10 [12:17, 19:22]
B 6 18 [1:5, 7:11] [12:17, 19:22]
C 11 19 1:10 [12:18, 20:22]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−2

10−1

100

101

102

103

Frequency [kHz]

M
a
g
n
it
u
d
e
[m

s−
2
/
N

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

− 1
2

0

1
2

1
·π

Frequency [kHz]

P
h
a
se

[r
a
d
]

Figure 7: H16z,16z of the unknown subsystem for different configurations. Configuration A ( ); Configu-
ration B ( ); Configuration C ( )
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To exploit the contributions of different configurations, the procedures outlined in section 2.4 are used.

Using the arithmetic average, the results shown in Figure 7 are processed as indicated in Eq. (12). The
result is shown in Figure 8, compared with the exact FRF provided by the numerical model. As expected,
the arithmetic average is able to attenuate the errors introduced by a single configuration, but it cannot be
considered an optimal approach since wrong contributions are mitigated but not eliminated.
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Figure 8: H16z,16z obtained as arithmetic average of the solutions in Figure 7. Reference ( ); Arithmetic
average ( ).

Using the weighted average, the results shown in Figure 7 are processed as indicated in Eq. (13) using the
weights defined in Eq. (14). The scatter level γχ is evaluated using the moving variance of the log modulus,
of the logarithm of the complex value, or the phase of the FRF, computed over a sliding window of k=5
frequency samples.

Using the logarithm of the FRF modulus, as defined in Eq. (15), the results are those in Figure 9. It can
be noticed that the estimated FRF is quite improved with respect to the one provided by arithmetic average.
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Figure 9: Left. H16z,16z obtained as weighted average using the moving variance of the logarithm of the
FRF modulus. Reference ( ); Weighted average ( ). Right. Stacked plot of the weights of the different
configurations: Configuration A � (blue); Configuration B � (red); Configuration C � (yellow).
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This happens because in this case the weights are chosen in a smart way, differently from the case of the
arithmetic average where they are all equal to 1/3.

Using the logarithm of the complex value of the FRF, as defined in Eq. (16), the results are those in Fig-
ure 10. Also in this case, the estimated FRF is quite improved with respect to the one provided by arithmetic
average. Furthermore, the estimated FRF is very similar to the one obtained by using the logarithm of the
FRF modulus.
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Figure 10: Left. H16z,16z obtained as weighted average using the moving variance of the logarithm of the
complex value of the FRF. Reference ( ); Weighted average ( ). Right. Stacked plot of the weights of
the different configurations: Configuration A � (blue); Configuration B � (red); Configuration C � (yellow).

Using the phase of the FRF, as defined in Eq. (17), the results are those in Figure 11. Again, the estimated
FRF is quite improved with respect to the one provided by arithmetic average and is very similar to the ones
obtained by using either the logarithm of the modulus or the logarithm of the complex value of the FRF.
In fact, the weights computed using the scatter of the log FRF modulus, the log FRF value and the FRF
phase are quite similar because these different quantities are likewise able to account for the quality of the
considered solutions.
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Figure 11: H16z,16z obtained as weighted average using the moving variance of the phase of the FRF. Ref-
erence ( ); Weighted average ( ). Right. Stacked plot of the weights of the different configurations:
Configuration A � (blue); Configuration B � (red); Configuration C � (yellow).
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4 Conclusions

In this paper, the decoupling procedure is applied to configuration dependent systems composed by invariant
mechanical subsystems with configuration dependent coupling conditions. Specifically, a system composed
by two invariant substructures assembled in three different configurations is considered. The decoupling
procedure is performed to identify the same unknown subsystem, assembled in different configurations.
Under these conditions the only difference introduced in the decoupling formulation by the configuration is
the FRF matrix of the assembled structure.

The decoupling problem is solved independently for each considered configuration, obtaining several esti-
mations of the FRF of the unknown subsystem. Although the unknown structure is always the same, the
different estimations of the FRF can have some discrepancies. In particular, some FRFs can show higher
levels of scatter in some frequency bands. Therefore, several strategies are used to exploit the redundancy
of information deriving from the multiple configurations of the assembled system. The results, obtained
using simulated noise polluted FRFs, highlight that the arithmetic average of the solutions is not particularly
advantageous, because possible outliers are averaged but not eliminated. On the contrary, weighted aver-
ages, where frequency dependent weights are inversely proportional to the scatter of FRF related quantities,
allow to obtain significant improvement in the final estimation of the FRF the unknown subsystem. Further
developments will consider using experimentally determined FRFs.
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