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Abstract 
Assessing the fatigue damage potential of vibration loading imposed on vibratory structures can be very 

demanding. Often, reproducing realistic load conditions in simulations or experiments is almost impossible, 

especially for non-stationary or non-Gaussian random vibration loading. A common solution is the 

replacement of recorded loads by simplified definitions – such as Gaussian loads – offering tremendous 

advantages. Very popular is the Fatigue Damage Spectrum (FDS) as a measure for assessing fatigue damage 

equivalence. Its model reduces a complex response behavior of real structures to single vibration modes and 

employs a simple fatigue damage hypothesis. Applying this concept for deriving Gaussian loads can lead to 

significant deviations of the response load spectra and consequently to the fatigue damage as well. This 

paper proposes a solution to this issue by i) introducing an enhanced FDS which uses load spectra as fatigue 

damage measures and ii) by using multiple instead of single Gaussian load definitions. 

1 Introduction 

A fatigue assessment is a challenging issue for engineers if loads are random and if loaded structures show 

a distinct dynamical behavior. Despite ongoing research activities, there are no comprehensive methods 

available – especially for non-Gaussian loading – that are generally applicable to the needs of numerical and 

experimental fatigue analyses. While a theoretical framework based on power spectral densities (PSD) is 

well developed and offers powerful capabilities for simulations and experiments, its theoretical foundation 

is limited to Gaussian random loading. An application of these methods for non-Gaussian loading may cause 

serious, non-conservative deviations of the predicted fatigue damage. To overcome these issues a variety of 

approximative methods have been developed. A consideration of the non-Gaussian probability density 

(expressed by the kurtosis), in addition to the PSD, was suggested for simulations [1, 2] and experiments 

[3–5]. Further, [6, 7] proposed a procedure based on the model of an amplitude-modulated Gaussian load, 

using the modulating function to determine the impact on the vibrational response of a structure. But a 

central issue of all these methods is the question of how the kurtosis of the excitational load transfers to the 

kurtosis of the response stresses [8]. Recently, this question has been analyzed by [9, 10] based on the theory 

of higher order spectra. On the basis of this theory, a procedure is proposed for decomposing non-Gaussian 

loads into a series of Gaussian loads having the equivalent fatigue potential [11–13]. 

Another considerably simple and thus popular method for analyzing the fatigue damage potential of arbitrary 

– e.g. non-Gaussian – random vibration loading is the Fatigue Damage Spectrum (FDS). A detailed 

introduction has been given in [14]. The FDS models a virtual vibratory structure by using the fundamental 

hypothesis, that even if an arbitrary structure has multiple resonant frequencies its fatigue response behavior 

is dominated by individual vibration modes. The corresponding model uses a parametric single-degree-of-

freedom (SDOF) vibratory system with a variable natural frequency. Varying that natural frequency and 

evaluating the corresponding fatigue damage provides a meaningful representation of the vibration modes 

the load excites.  The resulting FDS plot depicts the load’s fatigue damage potential over the natural 

frequencies of the virtual structure. Hereby the FDS enables comparing different vibration loads in terms of 
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its fatigue damage potential for a desired range of frequencies. As a consequence, the FDS can be applied 

for obtaining synthetic substitute loads – mostly PSD based – that aim to replicate the fatigue damage 

potential of the referencing original non-Gaussian load. Because of the concept’s simplicity, it has gained 

wide popularity and found a variety of applications. Different calculation approaches of the FDS are studied 

in [15]. A combination of deterministic and random excitation signals (sine-on-random) is analyzed in [16]. 

The FDS has been used to assess the fatigue damage potential of multiple PSDs [17], of shock response 

spectra (SRS) and also for deriving equivalent vibration loads for shaker tests [18]. The limits of the validity 

of the FDS are investigated in [19] using higher order spectra. As PSD-based load definitions offer important 

advantages for simulations and experiments, FDS-based procedures for deriving these PSDs are described 

on a theoretical base e.g. in [14] and also in standards for shaker test [20]. Publications [21, 22] propose 

further improvements and detailed procedures. A combination with shock response spectra and a 

comparison with other simplified methods is presented in [23, 24]. 

Despite its simplicity, the FDS method compromises a set of limitations. A critical issue is, that for the FDS 

one must define a fatigue damage hypothesis (e.g. Palmgren-Miner rule) which needs at least one slope 

parameter k even in its very simple single slope version. As a consequence, the validity of damage-

equivalent loads derived according to the FDS is restricted to this hypothesis and the specific slope k. This 

being said, typically the value of k is not constant for one component or an assembly, because its distinct 

value depends on various aspects like material, surface, character of notch, tempering and others. Especially 

for a shaker test with an assembly of different parts, it is impossible to adjust to a meaningful value of k. 

The objective of this paper is to overcome this issue by proposing an alternative definition of the FDS. The 

FDS’ representation is extended from scalar damage values (under the specific damage rule) to the load 

spectra of all SDOF systems’ responses. To further enable an approximation of these load spectra by PSD-

based load definitions, we propose to use a definition with multiple (quasi-stationary load) instead of a one 

single PSD (e.g. see [12, 13, 25, 26]). The following material presents that concept and a procedure for the 

derivation of this set of PSDs. Its presentation is based on synthetically generated non-Gaussian loads as 

well as on loads from real application. The following Section 2 provides some background of the study of 

non-Gaussian random loading, the FDS and its corresponding challenges. Section 3 presents the improved 

method based on a synthetically generated non-Gaussian load. Finally, Section 4 applies the proposed 

method to real data. Lastly, this paper ends with conclusions. 

2 Random signals and vibration fatigue 

2.1 Gaussian and non-Gaussian signals 

Stationary Gaussian signals 𝑥𝑔(𝑡) follow the central limit theorem (CLT). Their probability density function 

(PDF) 𝑝𝑔(𝑥) is fully defined by mean 𝜇𝑥 and standard deviation 𝜎 (with 𝜇2 = 𝜎
2). 

 𝑝𝑔(𝑥) =
1

√2𝜋𝜎2
𝑒
(−

(𝑥−𝜇𝑥)
2

2𝜎2
)
 (1) 

whereby 𝜇𝑥 = 𝑚1 and 𝜎 can be derived from the general equations for moments 𝑚𝑛 and central moments 

𝜇𝑛: 

 𝑚𝑛 = E[𝑋
𝑛(𝑡)] = ∫ 𝑥𝑛 𝑝(𝑥) 𝑑𝑥

+∞

−∞
 ; 𝜇𝑛 = E[(𝑋(𝑡) − E[𝑋(𝑡)]

𝑛)] = ∫ (𝑥 − 𝜇𝑥)
𝑛 𝑝(𝑥) 𝑑𝑥

+∞

−∞
  (2) 

The definition in the frequency domain is based on the PSD 𝐺𝑥𝑥,𝑔(𝑓); the relationship to the time domain 

representation 𝑥𝑔(𝑡) is given by: 

 𝜇2 = 𝜎
2 = ∫ 𝐺𝑥𝑥,𝑔(𝑓) 𝑑𝑓

∞

0
 (3) 

allowing a robust synthetic generation of Gaussian stationary signals according to the CLT. Non-Gaussian 

signals 𝑥𝑛𝑔(𝑡) do not follow the CLT and show a PDF 𝑝(𝑥𝑛𝑔) deviating from its Gaussian analogue 𝑝𝑔(𝑥). 

A common measure to quantify this deviation is the kurtosis defined by 𝛽 = 𝜇4 𝜇2⁄ ; the corresponding 

Gaussian value is 𝛽𝑔 = 3. For the synthetic generation of non-Gaussian signals there is a wide variety of 
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methods that have been proposed. The following presentation makes use of a specific non-stationary random 

excitation signal 𝑥𝑛𝑔(𝑡) consisting of a sequence of stationary Gaussian processes (quasi-stationary) [12, 

13]. Here a sequence of two processes 𝑥𝑔1(𝑡) and 𝑥𝑔2(𝑡) with different PSDs 𝐺𝑥𝑥,𝑔1(𝑓) and 𝐺𝑥𝑥,𝑔2(𝑓) as 

well as different durations 𝑇1 and 𝑇2 are used. The underlying model approximates a modulation process 

with an evolution in time and frequency [13]. Figure 1 shows the corresponding PSDs in (a) and the 

composed time signal 𝑥𝑛𝑔(𝑡) in (e). In addition the average PSD 𝐺𝑥𝑥,𝑛𝑔(𝑓) of signal  𝑥𝑛𝑔(𝑡) is also depicted 

in (a); the corresponding Gaussian signal 𝑥𝑔(𝑡) with a PSD 𝐺𝑥𝑥,𝑔(𝑓) ≈ 𝐺𝑥𝑥,𝑛𝑔(𝑓) is shown in (d). (c) depicts 

the PDFs of 𝑥𝑔(𝑡) and 𝑥𝑛𝑔(𝑡) with a kurtosis value of 𝛽𝑛𝑔 = 4 for the non-Gaussian signal. The PSDs 

𝐺𝑥𝑥,𝑛𝑔1(𝑓) and 𝐺𝑥𝑥,𝑛𝑔2(𝑓) follow a specific definition for the different frequency intervals [10 Hz, 30 Hz], 
[30 Hz, 50 Hz], [50 Hz, 80 Hz] and [80 Hz, 90 Hz] to develop different frequency related degrees of non-

stationarity. 

 

Figure 1: synthetically generated Gaussian and non-Gaussian excitation signals. (a) PSDs 𝐺𝑥𝑥,𝑛𝑔1(𝑓) and 

𝐺𝑥𝑥,𝑛𝑔2(𝑓) of a sequence of stationary Gaussian processes and average PSD 𝐺𝑥𝑥,𝑛𝑔(𝑓); (b) PSDs of average 

PSD 𝐺𝑥𝑥,𝑛𝑔(𝑓) and corresponding PSD 𝐺𝑥𝑥,𝑔(𝑓) of Gaussian process; (c) PDFs; (d) time realization of 

𝑥𝑔(𝑡); (e) time realization 𝑥𝑛𝑔(𝑡) with 𝑇1 = 2000 s and 𝑇2 = 500 s. 

2.2 Fatigue Damage Spectrum (FDS) 

The Fatigue Damage Spectrum (FDS) [14] is a measure for assessing the fatigue damage potential of 

vibration loading acting on arbitrary vibratory structures. It can be applied to any kind of load types, like 

stationary or non-stationary, deterministic or random, Gaussian or non-Gaussian but also any kind of mixed 

loading. The FDS models a virtual vibratory structure by using the hypothesis of single dominant vibration 

modes relevant for its fatigue response behavior, even if the original structure has multiple resonant 

frequencies. The fatigue damage caused by a single vibration mode represents the relevant fatigue measure. 

Based on this measure (here: 𝑦equ(𝑓𝐷)) the fatigue damage potential of vibration loading is expressed for 

each individual natural frequency 𝑓𝐷 of a vibratory structure. This can be used to assess and compare loads 

and consequently to derive simplified damage-equivalent loads having an identical fatigue damage potential, 

i.e. the same FDS. 
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Figure 2: Fatigue Damage Spectrum (FDS). (a) SDOF model; (b) FDS 𝑦equ,𝑔(𝑓𝐷) and 𝑦equ,𝑛𝑔(𝑓𝐷) for 

excitation signals 𝑥𝑔(𝑡) and 𝑥𝑛𝑔(𝑡) for a damping ration of 3 % and different slope parameters k; (c) 

comparison of 𝑦equ,𝑔(𝑓𝐷)/𝑦equ,𝑛𝑔(𝑓𝐷) in % of FDS of response signals 𝑦𝑔(𝑡) and 𝑦𝑛𝑔(𝑡). 

The corresponding model uses a single-degree-of-freedom (SDOF) vibratory system (Figure 2(a)) with 

mass 𝑚, spring 𝑐, damper 𝑑, acceleration excitation 𝑥(𝑡) and response displacement 𝑦(𝑡). Multiple resonant 

modes of real structures can be modelled by considering a parametrization with a variable natural frequency 

within a meaningful band and a damping ratio of a few percent. The displacement response 𝑦(𝑡) is assumed 

to be proportional to the deformation of a mode shape and consequently to the corresponding stress 

response 𝜎(𝑡) = 𝑘𝜎  𝑦(𝑡). This might be conceived as the source of the fatigue damage of a corresponding 

vibratory structure. A subsequent application of a cycle-counting method (e.g. rainflow counting [27], here 

only range counting is applied, i.e. mean stresses are neglected) outputs a discrete load spectrum with 𝐽 bins 

of cycle amplitudes 𝜎𝑗(𝑛𝑗) (with: 𝑗 = 1… 𝐽) and their corresponding counts 𝑛𝑗. By further considering a 

single slope S-N-curve (with slope parameter 𝑘 in a log-log-plot and a reference point 𝜎𝑓(𝑁𝑓)) and a linear 

damage accumulation hypothesis (Palmgren-Miner-rule), the accumulated damage 𝐷 can be derived as [27]: 

 𝑁𝑓  σ𝑓
𝑘 = 𝑁𝑗 σ𝑗

𝑘 ; 𝐷 = ∑
𝑛𝑗

𝑁𝑗
𝑗 =

𝑘𝜎
𝑘

𝑁𝑓 σ𝑓
𝑘

⏟
𝑘𝑓

 ∑ 𝑛𝑗 𝑦𝑗
𝑘

𝑗  (4) 

Since the main objective of the presented study is a comparison of different loads, the constant factor 𝑘𝑓 is 

not relevant here. Consequently, to simplify the presentation, an equivalent load 𝑦equ will be used: 

 𝑦equ = (∑ 𝑛𝑗 𝑦𝑗
𝑘

𝑗 )
1

𝑘 (5) 

Figure 2(b) shows the equivalent fatigue loads 𝑦equ,𝑔(𝑓𝐷) and 𝑦equ,𝑛𝑔(𝑓𝐷) for the corresponding excitation 

signals 𝑥𝑔(𝑡) and 𝑥𝑛𝑔(𝑡), resonant frequencies 𝑓𝐷 from 5 Hz to 95 Hz, a damping ratio of 3 % and three 

common values of 𝑘. The comparison (𝑦equ,g(𝑓𝐷)/𝑦equ,ng(𝑓𝐷)  ∙ 100 %) is plotted in Fig. 2(b). It shows 

that the Gaussian assumption is clearly non-conservative for the fatigue damage of 𝑦𝑛𝑔(𝑡). In addition the 

deviations of the damage results in the FDS are apparently related to the different degrees of non-stationarity 

of the frequency intervals [10 Hz, 30 Hz], [30 Hz, 50 Hz], [50 Hz, 80 Hz] and [80 Hz, 90 Hz] of the 

synthetic load 𝑥𝑛𝑔(𝑡). 

It is worth to mention here, that there are different mathematical procedures available for processing the 

required data numerically. The determination of the non-Gaussian response signals 𝑦𝑛𝑔(𝑡) is possible either 

in the time domain based on i) a direct numerical integration of the differential equation describing the 

SDOF-model, ii) a numerical solution of the convolution integral using the impulse response function of the 

SDOF-model as well as in the frequency domain using iii) the transfer function 𝐻𝑥𝑦(𝑓) of the SDOF-model 

and the Fourier-series representation of the input and output signals 𝑋𝑛𝑔(𝑓) and 𝑌𝑛𝑔(𝑓) =  𝐻𝑥𝑦(𝑓) 𝑋𝑛𝑔(𝑓). 
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A subsequent application of cycle-counting algorithms provides the load spectra. Considerably less 

computational effort is needed in the case of Gaussian processes 𝑥𝑔(𝑡) and 𝑦𝑔(𝑡). Their PSDs 𝐺𝑥𝑥(𝑓) and 

𝐺𝑦𝑦(𝑓) provide a full characterization of Gaussian processes, whereby they allow a major reduction of the 

number of required data points, as the PSDs are smooth functions for Gaussian processes. The calculation 

of the response uses the transfer function accordingly: 𝐺𝑦𝑦(𝑓) = |𝐻𝑥𝑦(𝑓)|
2
 𝐺𝑥𝑥(𝑓). Much faster PSD load 

cycle estimators can replace the above-mentioned time domain cycle-counting algorithm [28]. 

3 Derivation of stationary Gaussian fatigue equivalent load 

As introduced there is no coherent theoretical foundation available for the description of non-Gaussian and 

non-stationary random vibration loads in the area of vibration fatigue. Therefore, a concise, comprehensive 

definition and comparison of loads is often hard to accomplish. Also the implementation of numerical and 

experimental fatigue analyses can be very challenging or even impossible due to limitations of 

computational power or hardware. However, for Gaussian stationary vibrations a very elegant and efficient 

PSD-based theory is available [28]. In addition, simulations and experiments can be conducted easily using 

the PSD-based load definitions. For this reason, it is very common to translate any kinds of loads into PSD-

based signals having equivalent fatigue damage potentials. As introduced in Section 2.2 the FDS is a simple 

measure for describing the fatigue load potential of any kind of loads. Consequently it can be used for 

deriving fatigue-damage-equivalent PSD-based load descriptions for any kind of vibrational loads [14, 20–

24]. The following Section 3.1 demonstrates this procedure for the derivation of a replacement PSD 

𝐺𝑥𝑥,re(𝑓) based on the example signal 𝑥𝑛𝑔(𝑡) introduced in Section 2.1 and discusses the open issues caused 

by the application of a specific damage hypothesis, which is actually a core part of the FDS concept. 

Subsequently Section 3.2 presents a solution to these issues based on the novel FDS approach using load 

spectra 𝑦𝑗(𝑛𝑗, 𝑓𝐷) instead of equivalent fatigue loads 𝑦equ(𝑓𝐷) for the FDS and of using a set of replacement 

PSDs 𝐺𝑥𝑥,re,𝑟(𝑓) (for: 𝑟 = 1…𝑅) instead of the usual single replacement PSD 𝐺𝑥𝑥,re(𝑓). 

3.1 Approximation of FDS with a single Gaussian load 

The numerical concept applied here for deriving a PSD-based replacement loads uses numerical 

optimization methods. The objective of such an optimization task is deriving single Gaussian-stationary 

replacement load signals 𝑥𝑔,re(𝑡) by using its PSD description 𝐺𝑥𝑥,re(𝑓). The FDS 𝑦equ,re(𝑓𝐷) of s signal 

𝑥𝑔,re(𝑡) needs to be identical to the FDS 𝑦equ,𝑛𝑔(𝑓𝐷) of the original excitation signal 𝑥𝑛𝑔(𝑡). The objective 

function to minimize uses a least squares approach: 

 ∑ [𝑦equ,𝑛𝑔(𝑓𝐷,𝑛, 𝑘) − 𝑦equ,re(𝑓𝐷,𝑛, 𝑘)]
2𝑁

𝑛=1 → min (6) 

whereby 𝑓𝐷,𝑛 stands for the individual natural frequencies where the FDS values are determined numerically 

(for: 𝑛 = 1…𝑁) and 𝑘 stands for the corresponding slope parameter of the S-N-curve. The numerical 

representation of the replacement PSD 𝐺𝑥𝑥,re(𝑓) is based on the PSD 𝐺𝑥𝑥,𝑛𝑔(𝑓) of the original signal 𝑥𝑛𝑔(𝑡) 

scaled by the function ℎ(𝑓): 

 𝐺𝑥𝑥,re(𝑓) =  ℎ(𝑓) 𝐺𝑥𝑥,𝑛𝑔(𝑓) (7) 

For the numerical representation of the scaling function ℎ(𝑓), an appropriate interpolation is used with data 

points 𝑓𝑖 and ℎ𝑖(𝑓𝑖) (for: 𝑖 = 1… 𝐼) representing that function within the frequency interval given 

by 𝐺𝑥𝑥,re(𝑓). The final objective function to minimize is then: 

 ∑ [𝑦equ,𝑛𝑔(𝑓𝐷,𝑛, 𝑘) − 𝑦equ,re(𝑓𝐷,𝑛, 𝑘, ℎ𝑖)]
2𝑁

𝑛=1 → min (8) 

with the 𝐼 optimization variables ℎ𝑖. The term 𝑦equ,re(𝑓𝐷,𝑛, 𝑘, ℎ𝑖) expresses the fact, that the 𝐼 data points ℎ𝑖 

of the scaling function ℎ(𝑓) determine the approximation 𝑦equ,re(𝑓𝐷,𝑛, 𝑘, ℎ𝑖) of the FDS derived 

from ℎ(𝑓) 𝐺𝑥𝑥,𝑛𝑔(𝑓); its numerical calculation comprises the steps presented in Section 2.2. It is worth to 
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mention, that the PSD-based procedure for calculating 𝑦equ,re(𝑓𝐷,𝑛, 𝑘, ℎ𝑖) constitutes an important detail for 

a fast and well converging numerical optimization. A robust starting point for the optimization is given by 

ℎ𝑖(𝑓𝑖) = 1 (corresponding to the FDS 𝑦equ,𝑔(𝑓𝐷 , 𝑘) of the Gaussian signal 𝑥𝑔(𝑡)). 

Figure 3 depicts the results for three different values of 𝑘 = {3, 5, 7} and the underlying duration 𝑇 = 1000 s 
of the original signal 𝑥𝑛𝑔(𝑡) . Figure 3(a) shows the replacement PSDs 𝐺𝑥𝑥,re(𝑓) for the different values of 

𝑘 as well as the original PSD 𝐺𝑥𝑥,𝑛𝑔(𝑓). To clearly indicate the individual FDS-model used for the 

derivation, the slope parameter 𝑘 is added to the notation: 𝐺𝑥𝑥,re−3(𝑓), 𝐺𝑥𝑥,re−5(𝑓), 𝐺𝑥𝑥,re−7(𝑓).  From the 

FDS results given in Figure 2(c) it becomes clear, that the PSDs 𝐺𝑥𝑥,re−k(𝑓) have to have higher values 

than PSD 𝐺𝑥𝑥,𝑛𝑔(𝑓) in the order 𝐺𝑥𝑥,re−3(𝑓) < 𝐺𝑥𝑥,re−5(𝑓) <  𝐺𝑥𝑥,re−7(𝑓). The comparison of 𝑦equ,ng(𝑓𝐷) 

and 𝑦equ,re(𝑓𝐷) for 𝑘 = {3, 5, 7} depicted in Figure 3(b) shows how the individual FDSs are successfully 

approximated by the procedure. 

 

Figure 3: Gaussian replacement loads for different values of 𝑘. (a) PSD 𝐺𝑥𝑥,𝑛𝑔(𝑓) of original non-Gaussian 

signal 𝑥𝑛𝑔(𝑡) and PSDs 𝐺𝑥𝑥,re−k(𝑓) of replacement loads 𝑥𝑔,re−k(𝑡) for 𝑘 = [3, 5, 7]; (b) comparison of 

𝑦equ,re(𝑓𝐷)/𝑦equ,ng(𝑓𝐷) in % of FDS of response signals 𝑦𝑔,re(𝑡) and 𝑦𝑛𝑔(𝑡). 

The issue addressed by this paper is caused by the fact, that the derivation of the replacement loads 

𝑥𝑔,re−k(𝑡) is based on a specific fatigue damage model (here Palmgren-Miner rule with a given slope 

parameter 𝑘). If a certain fatigue damage model is used for that derivation, the resulting replacement loads 

𝑥𝑔,re−k(𝑡) will exclusively be valid for applications following that specific fatigue damage model. However, 

many real applications consist of component parts or assemblies contradicting this assumption. They 

comprise different S-N-curves with variable slopes, different materials with diverse surface qualities, notch 

characters, weld seams and so forth. For the example-data introduced above, this issue becomes obvious, if 

a replacement load 𝑥𝑔,re(𝑡) derived for a specific value of 𝑘 is applied to a problem actually having a 

different value 𝑘. Therefore, the data depicted in Figure 4 sensitizes for this issue: Figure 4(a) shows four 

different FDS curves 𝑦equ(𝑓𝐷, 𝑘) using  𝑘 = 7 for the evaluation; one FDS-curve was calculated from the 

original signal 𝑥𝑛𝑔(𝑡) and the remaining three were calculated from the replacement loads 𝑥𝑔,re−k(𝑡), 

initially derived for 𝑘 = 3, 𝑘 = 5 and 𝑘 = 7. As the deviations of these curves are hard to quantify within 

the FDS’ log plot, Figure 4(b) shows in addition their comparison in percent. The results clearly show, that 

the analyzed case reveals a serious underestimation of the fatigue damage loads for the replacement loads 

with 𝑘 = 3 and 𝑘 = 5 – even for a minor non-Gaussian signal with a kurtosis 𝛽𝑛𝑔 = 4. The higher the 

degree of non-stationarity initially assigned to the frequency intervals of 𝑥𝑛𝑔(𝑡) the higher is the deviation 

in the corresponding FDS. 
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Figure 4: underestimation of fatigue damage caused by replacement loads 𝑥𝑔,re−k(𝑡) originally derived with 

differing values of 𝑘. (a) FDS curves 𝑦equ(𝑓𝐷, 𝑘 = 7) using  𝑘 = 7 for the evaluation derived from i) 

signal 𝑥𝑛𝑔(𝑡), ii-iv) replacement signals 𝑥𝑔,re−k(𝑡) initially derived for 𝑘 = 3, 𝑘 = 5 and 𝑘 = 7; (b) 

comparison of curves from (a) in %. 

 

Figure 5: load spectra deviation caused by replacement loads 𝑥𝑔,re(𝑡). (a) load spectra (load cycles 𝑦𝑗(𝑛𝑗) 

over cumulative number of load cycles 𝑛𝑗) of response 𝑦𝑛𝑔(𝑡) induced by original excitation 𝑥𝑛𝑔(𝑡) and the 

corresponding replacement loads  𝑥𝑔,re−3(𝑡), 𝑥𝑔,re−5(𝑡), 𝑥𝑔,re−7(𝑡) initially derived for 𝑘 = 3, 𝑘 = 5 and 

𝑘 = 7 for one certain natural frequency of 𝑓𝐷 = 20 Hz; (b) representation of different load spectra for the 

full frequency range of the FDS. 

These deviations are caused by the logic of the FDS, which reduces the vibration response 𝑦(𝑡) at the 

different natural frequencies 𝑓𝐷 to corresponding equivalent fatigue damage values 𝑦equ(𝑓𝐷) by using a 

fatigue damage hypothesis expressed by a slope parameter 𝑘. A look at the corresponding load spectra 

𝑦𝑗(𝑛𝑗) of these responses 𝑦(𝑡) reveals the problem behind the replacement loads. Figure 5(a) shows these 

load spectra at a certain unique frequency 𝑓𝐷 = 20 Hz of the FDS; it compares the load spectra of the 

vibration response 𝑦𝑛𝑔(𝑡) induced by the original excitation signal 𝑥𝑛𝑔(𝑡) to the load spectra induced by 

the corresponding replacement signals 𝑥𝑔,re−3(𝑡), 𝑥𝑔,re−5(𝑡), 𝑥𝑔,re−7(𝑡) initially derived for 𝑘 = 3, 𝑘 = 5 
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and 𝑘 = 7. The different load spectra of 𝑦𝑔,re−k(𝑡) are a clear indication for the procedure’s sensitivity to 

the slope exponent. Further, Figure 5(b) highlights the fact that the extended FDS consists of individual load 

spectra for each natural frequency 𝑓𝐷. A solution to this issue is presented in the next Section; it is based on 

the idea of approximating not only the single equivalent fatigue damage values 𝑦equ(𝑓𝐷) at the different 

frequencies 𝑓𝐷, but the full response load spectra 𝑦𝑗(𝑛𝑗, 𝑓𝐷) at these frequencies 𝑓𝐷. 

3.2 Approximation of extended FDS with multiple Gaussian loads 

The limitation of the approach presented in the last Section 3.1 is caused by the fact, that the fatigue damage 

impact of a non-stationary and non-Gaussian excitation load 𝑥𝑛𝑔(𝑡) is approximated by a single stationary 

Gaussian load 𝑥𝑔,re(𝑡) (see Figure 5). This restrictive constraint makes it hard to achieve a satisfactory 

universal fatigue damage approximation, since the associated response load spectra are inherently inflexible. 

The proposals of the presented paper for a better solution are i) to use a set of 𝑅 Gaussian loads 𝑥𝑔,re,𝑟(𝑡) 

(for: 𝑟 = 1…𝑅) with different PSDs and durations 𝑇𝑟 (with: 𝑇 = ∑ 𝑇𝑟𝑟 ) as a replacement load: 

 𝑥𝑔,re(𝑡) =  

{
 
 

 
 𝑥𝑔,re,1(𝑡) for: 0 ≤ 𝑡 ≤ 𝑇1
𝑥𝑔,re,2(𝑡) for: 𝑇1 < 𝑡 ≤ 𝑇1 + 𝑇2

⋮ < 𝑡 ≤
𝑥𝑔,re,𝑅(𝑡) for: 𝑇 − 𝑇𝑅 < 𝑡 ≤ 𝑇

 (9) 

and ii) to approximate the load spectra 𝑦𝑗(𝑛𝑗) of the response signals 𝑦𝑔,re(𝑡) at all the natural frequencies 

𝑓𝐷 of the SDOF system underlying the FDS. The idea of obtaining an approximation using multiple different 

Gaussian signals (quasi-stationary loading) to a non-Gaussian and non-stationary signal has already been 

analyzed before in different sources [11–13, 25, 26]. It contributes to the fact that real loading is regularly 

composed of various dominating load states. The idea of expressing that approximation by extending the 

FDS logic to load spectra is new to the knowledge of the authors. 

Similar to the approximation by a single Gaussian load (Section 3.1) the numerical implementation is based 

on optimization techniques. The objective of this optimization is the derivation of multiple Gaussian-

stationary replacement signal 𝑥𝑔,re,𝑟(𝑡) (with: 𝑟 = 1…𝑅) with durations 𝑇𝑟 and a corresponding PSD 

definition 𝐺𝑥𝑥,re,𝑟(𝑓). The representation of these PSDs adopts 𝐺𝑥𝑥,𝑛𝑔(𝑓) of the original signal 𝑥𝑛𝑔(𝑡) 

which is scaled by functions ℎ𝑟(𝑓): 

 𝐺𝑥𝑥,re,𝑟(𝑓) =  ℎ𝑟(𝑓) 𝐺𝑥𝑥,𝑛𝑔(𝑓);      with: 𝑟 = 1…𝑅 (10) 

The numerical representation of the scaling functions ℎ𝑟(𝑓) is again implemented via an interpolation with 

data points 𝑓𝑖 and ℎ𝑟,𝑖(𝑓𝑖) (for: 𝑖 = 1… 𝐼), see corresponding approach in Section 3.1. The load spectra 

𝑦𝑔,re,𝑟𝑗
(𝑛𝑟𝑗) of the 𝑅 Gaussian responses 𝑦𝑔,re,𝑟(𝑓𝐷,𝑛, 𝑡) at the 𝑁 different natural frequencies 𝑓𝐷,𝑛 of the 

SDOF system have to be accumulated to a total load spectrum for each frequency 𝑓𝐷,𝑛: 

 𝑛𝑗 (𝑦𝑔,re𝑗
, 𝑓𝐷,𝑛) = ∑ 𝑛𝑟𝑗 (𝑦𝑔,re,𝑟𝑗

, 𝑓𝐷,𝑛)
𝑅
𝑟=1  (11) 

All these individual load spectra at the 𝑁 frequencies 𝑓𝐷,𝑛 need to be identical to the corresponding response 

load spectra 𝑦𝑛𝑔𝑗
(𝑛𝑗) of the original excitation signal 𝑥𝑛𝑔(𝑡). Therefore, equivalent to Eq. (7) the total 

objective function to minimize uses a least squares approach: 

 ∑ {∑ [𝑦𝑔,re𝑗
(𝑛𝑗, 𝑓𝐷,𝑛) − 𝑦𝑛𝑔𝑗

(𝑛𝑗, 𝑓𝐷,𝑛)]
2

𝐽
𝑗=1 }𝑁

𝑛=1 → min (12) 

with the additional constraint condition, that the total duration of the set of replacement signals corresponds 

to the duration of the original signal: 

  𝑇 = ∑ 𝑇𝑟
𝑅
𝑟=1  (13) 
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The optimization variables are the 𝑅 ∙ 𝐼 discrete data points of the 𝑅 scaling functions ℎ𝑟,𝑖(𝑓𝑖) and the 𝑅 

durations 𝑇𝑟. The use of the above-mentioned PSD based numerical implementation is essential for a fast 

computation and also good convergence properties. The number 𝑅 of replacement PSDs has to be 

determined in a way that it gives good approximations result for the underlying load spectra. As stated 

before a robust starting point for the optimization is given by ℎ𝑟,𝑖(𝑓𝑖) = 1; for the durations 𝑇𝑟 = 𝑇/𝑅 works 

well. 

 

Figure 6: approximation of load spectra of response 𝑦𝑛𝑔(𝑡) (load cycles 𝑦𝑗(𝑛𝑗) over cumulative number of 

load cycles 𝑛𝑗) induced by original excitation 𝑥𝑛𝑔(𝑡) by two replacement loads 𝑥𝑔,re,𝑟(𝑡) for the two single 

natural frequencies 𝑓𝐷 = 20 Hz (a) and 𝑓𝐷 = 40 Hz (b). 

Figure 6 shows the results achieved with that procedure for the underlying quasi-stationary example for two 

selected frequencies of 𝑓𝐷 = 20 Hz (6a) and 𝑓𝐷 = 40 Hz (6b). Because of the initial definition of the quasi-

stationary signal 𝑥𝑛𝑔(𝑡) consisting of two stationary segments (see Section 2.1) a value of 𝑅 = 2 was taken 

for the approximation. Each plot shows the corresponding load spectra of both segments 𝑦𝑔,re,𝑟(𝑡), the 

respective total load spectrum of 𝑦𝑔,re(𝑡) and also the load spectrum of the response 𝑦𝑛𝑔(𝑡) induced by the 

original excitation signal 𝑥𝑛𝑔(𝑡). In comparison to Figure 5(a) the deviations in the load spectra were 

successfully minimized by the new approach. Figure 7 shows the corresponding PSDs 𝐺𝑥𝑥,re,𝑟(𝑓) in (a) and 

the related time realizations 𝑥𝑔,re,𝑟(𝑡) in (c). The PSDs 𝐺𝑥𝑥,re,1(𝑓) and 𝐺𝑥𝑥,re,2(𝑓) resulting from the 

optimization show a clear similarity to the PSDs 𝐺𝑥𝑥,1(𝑓) and 𝐺𝑥𝑥,2(𝑓) (see Figure 1a) initially used for the 

definition of signal 𝑥𝑛𝑔(𝑡); even the solution of the corresponding durations 𝑇𝑟 is close to the initial 

definition. To prove the advantages of the new approach the set of two piecewise stationary replacement 

signals 𝑥𝑔,re,1(𝑡) and 𝑥𝑔,re,2(𝑡) was subject to an FDS-based assessment and a comparison with the related 

FDS of the original signal 𝑦𝑛𝑔(𝑡) was performed. The results are summarized in Figure 8 for the prior slope 

parameters 𝑘 = {3, 5, 7}. In relation to Figure 2(b) and (c) the advantages are obvious: the FDS assessment 

of the replacement signals 𝑥𝑔,re,𝑟(𝑡) is i) very close to the original signal 𝑥𝑛𝑔(𝑡) and ii) independent of the 

value of 𝑘, resp. in general independent of a specific damage hypothesis. This is due to principal approach 

presented herein, using a load spectra based FDS method in conjunction with a set of piecewise stationary 

and Gaussian replacement loads. 
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Figure 7: two replacement loads 𝑥𝑔,re,𝑟(𝑡). (a) PSDs of original non-stationary, non-Gaussian signal 

𝐺𝑥𝑥,𝑛𝑔(𝑓), of 𝑅 = 2 replacement loads 𝐺𝑥𝑥,re,𝑟(𝑓) and of total replacement load 𝐺𝑥𝑥,re(𝑓); (b) original 

signal 𝑥𝑛𝑔(𝑡) from Figure 1(e); (c) representation of signals 𝑥𝑔,re,𝑟(𝑡) from (a) in time domain. 

 

Figure 8: FDS of multiple replacement loads 𝑥𝑔,re,𝑟(𝑡). (a) FDS curves 𝑦equ(𝑓𝐷) using  𝑘 = {3, 5, 7} for the 

synthetic signal 𝑥𝑛𝑔(𝑡) and the set of piecewise stationary signals 𝑥𝑔,re,𝑟(𝑡); (b) comparison of curves in (a) 

in percent. 

4 Application to real data 

The presentation in Sections 2 and 3 is based on a synthetically generated, non-stationary and non-Gaussian 

signal. A basic idea of using these synthetic signals is to make these reproducible. As the analysis of complex 

real loads with high kurtosis values might be more interesting and revealing, the current Section has the 

objective of applying the proposed method to recorded loading. The following example originating from a 

railway application demonstrates a broader validation of the proposed method. The corresponding excitation 

signal 𝑥𝑛𝑔(𝑡) embodies the acceleration in vertical direction recorded at an axle box of a railway vehicle 

[25]. Figure 9(a) shows the signal with a total length of about 𝑇 = 1200 s. Figure 9(b) depicts the PDF 

𝑝(𝑥𝑛𝑔) and the corresponding Gaussian PDF 𝑝𝑔(𝑥) with same standard deviation 𝜎. The kurtosis 𝛽𝑛𝑔 =

29.25 indicates a strong deviation from the Gaussian distribution. Using the proposed method, a set of 
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piecewise stationary Gaussian replacement loads were derived with a number of  𝑅 = 6 to achieve a 

sufficient approximation, see Figure 9(c). Figure 9(b) also shoes the total PDF 𝑝(𝑥𝑟𝑒) of the replacement 

signal and the corresponding kurtosis 𝛽𝑟𝑒 = 33.96. To enable an assessment of the quality of the 

replacement signal, Figure 10 summarizes the results as presented before in Figure 8 for the synthetic 

signal 𝑥𝑛𝑔(𝑡). Additionally, also the FDS curves 𝑦equ,g(𝑓𝑑) of the corresponding Gaussian process 𝑥𝑔(𝑡) 

are depicted, making the strong deviation of the fatigue potential obvious. Finally, Figure 11 represents the 

achieved result in relation to the load spectra of the response signals induced by the six replacement loads 

segments 𝑥𝑔,re,𝑟(𝑡) for the selected frequencies of 𝑓𝐷 = 25 Hz (11a), 𝑓𝐷 = 50 Hz (11b), 𝑓𝐷 = 75 Hz (11c) 

and 𝑓𝐷 = 100 Hz (11d). The results clearly demonstrate that the initial objectives of i) replacing a non-

stationary and non-Gaussian signal by a quasi-stationary Gaussian replacement signal having the same 

fatigue potential and ii) being independent of a specific fatigue damage hypothesis are achieved with 

success. 

5 Conclusions 

The presented paper introduced an extended Fatigue Damage Spectrum (FDS) using response load spectra 

as a fatigue damage measure for non-stationary and non-Gaussian random vibration loads. The new 

approach proved useful for the derivation of fatigue equivalent quasi-stationary Gaussian loads replacing 

non-Gaussian loads caused by an underlying modulation process evolving in time and frequency. As a 

definition of random vibratory signals based on stationarity and Gaussianity has major advantages for 

numerical and experimental fatigue analyses, the proposed method opens up new a new path for the solution 

of random vibration problems. It replaces a non-stationary, non-Gaussian load by a sequence of stationary 

Gaussian loads. 

 

Figure 9: measured non-stationary and non-Gaussian acceleration signal from an axle box of a railway 

vehicle [25]. (a) time signal 𝑥𝑛𝑔(𝑡); (b) PDFs of 𝑥𝑛𝑔(𝑡), 𝑥𝑔,re(𝑡) and corresponding Gaussian PDF; (c) 

quasi-stationary replacement signal 𝑥𝑔,re(𝑡) consisting of 𝑅 = 6 stationary parts 𝑥𝑔,re,𝑟(𝑡). 

USD - APPLICATIONS 4745



 

Figure 10: FDS of replacement loads 𝑥𝑔,re(𝑡). (a) FDS curves 𝑦equ(𝑓𝐷) using  𝑘 = {3, 5, 7} for the recorded 

load 𝑥𝑛𝑔(𝑡), the replacement load 𝑥𝑔,re(𝑡) and the corresponding Gaussian load 𝑥𝑔(𝑡); (b) comparison of 

curves in (a). 

 

Figure 11: approximation of load spectrum of response 𝑦𝑛𝑔(𝑡) (load cycles 𝑦𝑗(𝑛𝑗) over cumulative number 

of load cycles 𝑛𝑗) induced by original excitation 𝑥𝑛𝑔(𝑡), total replacement load 𝑥𝑔,re(𝑡) and set of 6 

replacement loads 𝑥𝑔,re,𝑟(𝑡) for four different natural frequencies 𝑓𝐷 = 25 Hz (a), 𝑓𝐷 = 50 Hz (b), 𝑓𝐷 =

75 Hz (c) and 𝑓𝐷 = 100 Hz (d). 
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Appendix 

A Nomenclature 

𝑐 spring stiffness 

𝑑 damper constant 

𝑓, 𝑓𝐷 frequency , natural frequency 

ℎ(𝑓) scaling function 

ℎ𝑖(𝑓𝑖) data points of scaling function 

ℎ𝑟,𝑖(𝑓𝑖) data points of scaling function for Gaussian signal 𝑟 

𝑖 index of interpolation data points 

𝑗 index of cycle classes 

𝑘 slope parameter of damage hypothesis 

𝑘𝜎, 𝑘𝑓 stress constant 

𝑚 mass 

𝑚𝑛 𝑛-th statistical moment 

𝑛 index of FDS frequencies 

𝑛𝑗 Number of cycles in class 𝑗 

𝑝(𝑥) PDF of 𝑥(𝑡) 

𝑟 index of replacement PSDs 

𝑥(𝑡) realization of random process 𝑋(𝑡), excitation signal 

 𝑥𝑔(𝑡) Gaussian excitation signal 

 𝑥𝑛𝑔(𝑡) non-Gaussian excitation signal 

 𝑥𝑔,re(𝑡) Gaussian replacement signal for  𝑥𝑛𝑔(𝑡) 

 𝑥𝑔,re−k(𝑡) Gaussian replacement signal for  𝑥𝑛𝑔(𝑡) derived with slope parameter 𝑘 

 𝑥𝑔,re,𝑟(𝑡) 𝑟-th Gaussian replacement signal for  𝑥𝑛𝑔(𝑡) 

𝑦(𝑡) response signal 

 𝑦𝑔(𝑡) Gaussian response signal 

 𝑦𝑛𝑔(𝑡) non-Gaussian response signal 

𝑦equ equivalent fatigue load 

𝑦equ(𝑓𝐷) FDS expressing the equivalent fatigue load 

𝑦equ,𝑔(𝑓𝐷) FDS expressing the equivalent fatigue load of a Gaussian signal 

𝑦equ,𝑛𝑔(𝑓𝐷) FDS expressing the equivalent fatigue load of a non-Gaussian signal 

𝑦𝑗(𝑛𝑗, 𝑓𝐷) load spectrum of displacement bins 𝑦𝑗 and cycle counts 𝑛𝑗 at frequency 𝑓𝐷 

𝐷 accumulated damage 

𝐺𝑥𝑥,𝑔(𝑓) PSD of 𝑥𝑔(𝑡) 

𝐺𝑥𝑥,re(𝑓) PSD of  𝑥𝑔,re(𝑡) 
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𝐺𝑥𝑥,re−k(𝑓) PSD of  𝑥𝑔,re−𝑘(𝑡) 

𝐺𝑥𝑥,re,𝑟(𝑓) PSD of  𝑥𝑔,re,𝑟(𝑡) 

𝐺𝑥𝑥,𝑛𝑔(𝑓) PSD of 𝑥𝑛𝑔(𝑡) 

𝐺𝑦𝑦,𝑔(𝑓) PSD of 𝑦𝑔(𝑡) 

𝐺𝑦𝑦,𝑛𝑔(𝑓) PSD of 𝑦𝑛𝑔(𝑡) 

𝐻𝑥𝑦(𝑓) transfer function 

𝐼 number of interpolation data points 𝑖 

𝐽 number of cycle classes 𝑗 

𝑁 number of FDS frequencies 𝑛 

𝑅 number of replacement PSDs 𝑟 

𝑇 duration 

𝑋(𝑡) random process 

𝑋𝑛𝑔(𝑓) Fourier-series of  𝑥𝑛𝑔(𝑡) 

𝑌𝑛𝑔(𝑓) Fourier-series of  𝑦𝑛𝑔(𝑡) 

𝛽 kurtosis 

𝜇𝑥 mean of 𝑥(𝑡) 

𝜇𝑛 𝑛-th central statistical moment 

𝜎 standard deviation 

𝜎(𝑡) stress signal 

𝜎𝑗(𝑛𝑗) load spectrum of stress bins 𝜎𝑗 and cycle counts 𝑛𝑗 

𝜎𝑓(𝑁𝑓) reference point of wöhler-line 
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