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Abstract
This paper presents an electroelastic realization of a nonlinear metastructure, based on piezoelectric patches
and nonlinear shunt circuits. The nonlinear attachments consist on shunt circuits that feature an inductance
and a nonlinear circuit, whose response is proportional to the cube of the electrical current. The piezoelectric
layers are placed such that they entirely cover the top and bottom faces of the elastic substrate. The external
electrodes are continuously segmented into several parts so as to constitute the electroelastic metastructure,
with as many shunt circuits as electrode segments. This paper shows that the interaction among the shunt
circuits in the periodic metastructure leverages a chaotic band, in which the resonances of the bare structure
are significantly reduced. Numerical simulations based on an electromechanical Euler-Bernoulli finite ele-
ment and on direct time-domain integration demonstrate the benefit of constituting nonlinear electroelastic
metastructures for wave attenuation. Experimental demonstrations confirm the numerical findings.

1 Introduction

Currently, linear locally resonant metastructures are at an advanced level of understanding, wherein all their
effects on the mechanical wave propagation through solid media are well known [1, 2, 3]. Yet, only a few
examples are found on nonlinear metamaterials that take advantage of the complicated yet interesting be-
haviors for their performance enhancement. Most of the available research in nonlinear metamaterials and
metastructures has been devoted to the study of their transmissibility properties, based on wave propagation
approaches. On the one hand, one-dimensional nonlinear metamaterials based on Duffing-type oscillators
[4, 5], complete cubic-order polynomials [6, 7], and bistable attachments [8, 9], are examples that harness
nonlinear resonating attachments in the enhancement of the attenuation band properties, i.e. its location,
edges, and intensity. On the other hand, an even reduced amount of efforts are currently available that com-
bine the benefits of engineered nonlinearities and piezoelectric metastructures [10, 11, 12, 13, 14]. These
studies have demonstrated improved vibration attenuation capabilities and impressive wave propagation fea-
tures that can be rendered useful even for energy harvesting and insulation applications.

This paper presents numerical and experimental investigations on the transmissibility properties of an one-
dimensional nonlinear piezoelectric metastructure, with a focus on piezoelectric resonators featuring positive
cubic relationships between the electrical charge and the voltage. The interplay between nonlinear electrical
oscillators and negative capacitance (NC) circuits is also addressed to show its positive effects in facilitating
the tuning of the piezoelectric attachments in the presence of fixed inductors. A piezoelectric metastructure
with 12 nonlinear attachments is modeled by using Euler-Bernoulli electromechanical finite elements [3],
and the full matrices are reduced by using an electromechanically coupled Galerkin projection basis [15].
The reduced electromechanical model is solved by using Runge-Kutta (RK)-based, time-domain integration
[16, 17, 18], and the steady-state transmissibility curves are compared with experimental results that showed
a high agreement between both approaches. In special, it has been seen that flat transmissibilities around the
underlying linear bandgap arise when the nonlinear coefficients are set to large values that elucidate strongly
nonlinear behaviors, whereas mixed linear (attenuation band) and nonlinear (wave supratransmission and
nonlinear reductions) effects are found when the attachments are set to weakly and moderately nonlinear
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values.

This paper is organized as follows: Section 2 briefly describes the set of equations of motion for the one-
dimensional piezoelectric metastructure through a finite element (FE)-based procedure; Section 3 presents
numerical and experimental results of a nonlinear piezoelectric metastructure, where the transmissibility
functions are shown to discuss the relevant dynamic behaviors; and Section 4 ends this paper with concluding
remarks and future directions on this research.

2 Numerical Modeling

Figure 1(a) illustrates an electroelastic unit cell of the nonlinear piezoelectric metastructure, which consists
of a homogeneous, slender bending beam to which one single piezoelectric element is bonded onto one of its
surfaces. The actual one-directional metastructure is formed after repeating the unit cell several times along
one single direction. The structural domains are parameterized by their geometrical and material properties
given by the length l, width w, and thickness h; and by the density ρ, elastic modulus c, and effective
one-dimensional piezoelectric parameters c̄11 (elastic modulus), ē31 (stress constant), and ϵ̄33 (permittivity
component) [19], where the subscripts s, p denote substrate and piezoelectric domains, respectively. The
continuum is approached by using a Hamiltonian approach, and the equations that govern its dynamical
behavior are obtained by following finite element (FE) procedures [3, 20, 21, 22]. Since the host structure
is to be subjected to low-amplitude harmonic loads, the mathematical derivations of the elastic domain rely
upon linear constitutive relationships, which are valid for both the substrate and the piezoelectric layers.
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Figure 1: Sketches of the distributed-parameter nonlinear piezoelectric unit cell: (a) 3-D view of the NPMS’
unit cell; (b) nonlinear shunt circuit.

The shunt circuit shown in Fig. 1(b) consists of an inductor, Lc, a resistor, Rc, a negative capacitor, Cn, and
a nonlinear capacitor with nonlinear coefficient α that presents a cubic voltage-charge relation [23, 24]. As
shown in the figure, all the electric components in the external circuit are connected in series form. This
external shunt circuit is then connected in parallel with the piezoelectric element, which is mathematically
modeled as a controlled current source in parallel to the piezoelement’s capacitance.

With the structural and piezoelectric matrices obtained from finite element procedures, the complete set of
equations of motion of the electroelastic body that accounts for a single nonlinear shunt circuit can be stated
in a matrix form, as follows:

[
M 0
0t Lc

]{
ẅ
q̈

}
+

[
D 0
0t Rc

]{
ẇ
q̇

}
+

[
K ΘC−1

p

ΘtC−1
p C−1

r

]{
w
q

}
+ αFD

nl

{
0
q3

}
=

{
F
0

}
, (1)

where w denote the transverse displacement, and the overdots denote derivatives with respect to time;
{M , D, K} ∈ R(ns×ns) are the global mass, damping, and stiffness matrices, respectively, with ns being
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the total number of structural DoF; Θ ∈ R(ns×ne) is the global electromechanical coupling matrix with ne

being the total number of electrical DoF in the FE mesh; Cp ∈ R(ne×ne) is the global, diagonal matrix of
piezoelectric capacitances; Cr ∈ R(ne×ne) is the global, diagonal matrix of residual capacitances that re-
sults after placing a negative capacitor, Cn, in the external shunt circuit as shown in Fig. 1(b); F ∈ R(ns×1)

is the global vector of structural loads; q ∈ R(ne×1) is the global vector of extracted electrical charges;
0 ∈ 0ns×1 is a null vector; and FD

nl =
[[
0ns×ns , 0ns×1

]
;
[
01×ns , 1

]]
is the influence coefficient matrix

[25] that indicates the position at which the local cubic force is applied into the electroelastic beam. It is
worth noticing that the piezoelectric matrices, Θ and Cp, should be reduced by condensing the electrical
degrees of freedom [3] as, since the piezoelectric layer is covered with thin and conductive electrodes, it can
be safely assumed that all the finite elements belonging to the same piezoelectric element generate the same
voltage output. In this way, for the unit-cell case, Θ becomes a (ns × 1)-sized vector, while Cp becomes a
single scalar value denoting the actual inherent piezoelectric capacitance. This also makes Cr to be a single
scalar value denoting the residual capacitance after implementing the negative capacitor in the external series
shunt circuit.

To account for L independent shunt circuits, the electrical terms in Eq. 1 can be rewritten as (L× L)-sized di-
agonal matrices, where L = diag (Lc, Lc . . . Lc); R = diag (Rc, Rc . . . Rc); Cp = diag (Cp, Cp . . . Cp);
and Cr = diag (Cr, Cr . . . Cr). Hence, the equations of motion of the electroelastic metastructure be-
comes:

[
M 0
0t L

]{
ẅ
q̈

}
+

[
D 0
0t R

]{
ẇ
q̇

}
+

[
K ΘC−1

p

ΘtC−1
p C−1

r

]{
w
q

}
+ αFD

nl

{
0
q3

}
=

{
F
∅
}
, (2)

where FD
nl =

[[
0ns×ns , 0(ns+L)×1

]
;
[
01×(ns+L), IL×L

]]
; q ∈ RL×1 is the vector of electrical charges;

0 ∈ 0ns×L; and ∅ ∈ 0L×1. Notice that, for the piezoelectric metastructure case, Θ becomes a (ns × L)-
sized matrix.

2.1 Model reduction

Although the FE model for the nonlinear piezoelectric metastructure stated in Eq. 2 provides a high level of
accuracy, even with matrices that are several times smaller than those obtained through full 3D FE models,
nonlinear time- and frequency-domain computational analyses may still be infeasible in affordable times
due to their relatively large size. Therefore, the set of equations of motion in Eq. 2 is now reduced by
using the electromechanically coupled Galerkin projection [15], where the electromechanical modal basis is
determined by solving the following generalized eigenvalue problem:

[
−ϖ2M̃ + K̃

]
Φ = 0, (3)

where (ϖ, Φ) are the eigenvalues and eigenvectors, with Φi = [Φ′
si, Φ

′
Li] being the i-th eigenvector

composed of ns mechanical degrees of freedom and by L electrical degrees of freedom. This makes
Φ ∈ R(ns+L)×P , with P being the number of elastic modes to be retained in the modal basis.

The Galerkin projection given by W = Φw(t), together with its time derivatives, are substituted into Eq. 2,
which, by premultiplying its first line by Φt, gives the following reduced system of equations, as follows:

[M 0
0t L

]{
ẅ
q̈

}
+

[D 0
0t R

]{
ẇ
q̇

}
+

[
K ΘC−1

p

C−1
p Θ

t
C−1

r

]{
w
q

}
+ αFD

nl

{
0
q3

}
=

{F
∅
}
, (4)

where 0 ∈ 0P×L; FD
nl =

[[
0P×P , 0(P+L)×1

]
;
[
01×(P+L), IL×L

]]
; and:

M = ΦtM̃Φ; D = ΦtD̃Φ; K = ΦtK̃Φ; Θ = ΦtΘ; F = ΦtF , (5)
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The system of equations of motion stated in Eq. 4 is now compactly rewritten as follows:

Mz̈ +Dż +Kz + αFD
nlz

3 = F , (6)

where z = [w, q]t is the state vector expressed in both modal and electrical coordinates.

3 Numerical and Experimental Results

The steady-state transmissibility functions of a finite nonlinear piezoelectric metastructure are presented and
discussed in this Section through numerical and experimental results.

Figure 2 illustrates the investigated one-dimensional metastructure, with geometry and constituent material
parameters as reported in Table 1. Fig. 2(a) shows the top view of the metastructure’s numerical model, while
Fig. 2(b) displays the laboratory implementation of the metastructure with the nonlinear circuits, each of them
featuring a fixed 60 H inductor (Hammond Manufacturing, ref. 546-156C). The piezoelectric metastructure
features a total of 12 unit cells. Additional geometrical and material details for the entire metastructure are
given next. The Rayleigh damping coefficients are updated to b1 = 1.0 s−1, and b2 = 1.1 × 10−5 s. Two
homogeneous bare waveguides with lengths ls1 = 234.1× 10−3 m, and ls3 = 229.2× 10−3 m, are attached
to both extremes of the metastructure, as shown in Fig. 2, which together with the beam portion endowed
with the piezo elements (beam portion of length ls2) becomes 1.096 m in length (ls1 + ls2 + ls3 in Fig. 2).

ρ
s
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ρp, c11, e31, ε33, hp

ls2

Figure 2: One-dimensional nonlinear piezoelectric metastructure: (a) top view of the structure’s sketch;
(b) laboratory implementation of the metastructure: workbench’s top view including the 12 nonlinear shunt
circuits.

3.1 Setup of the experimental workbench

Figure 3(a) illustrates the workbench used to obtain the transmissibility measurements from the actual non-
linear piezoelectric metastructure, while Figure 3(b) displays a close-up of one single electrical circuit. The
workbench is composed of a closed-loop excitation system, driven by the LMS.Random Control software
that controls a 16-input, 2-output LMS.Scadas acquisition system, a electrodynamic shaker with power am-
plifier set in current mode that excites the metastructure at its left end, and a pair of high-sensitivity ac-
celerometers (100 mg with g = 9.81 m.s−2), each of them being placed onto the free beam ends. As
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Table 1: Geometrical and material parameters of the piezoelectric unit cell (Metastructure: 12 unit cells).

Parameter Value Parameter Value

Substrate length 52.72× 10−3 m PZT length 45.97× 10−3 m
Substrate width 24.85× 10−3 m PZT width 24.85× 10−3 m
Substrate thickness 1.10× 10−3 m PZT compliance, s11 16.40× 10−12 1/Pa
Substrate Young’s modulus 68.30× 109 Pa PZT electromech. coupling, d31 −171.00× 10−12 C/N
Substrate density 2.80× 103 kg/m3 PZT permittivity, ε33 15.05× 10−9 F/m
PZT thickness 0.24× 10−3 m PZT density 7.75× 103 kg/m3

Mass damping parameter, b1 1.50 1/s Stiffness damping parameter, b2 7.50× 10−7 s

shown in Figs. 3 and 4, the shunt circuits rely on operational amplifiers (Texas Instruments OPA551) that are
powered with a ±32 VDC source. The system is excited by using random signals that are provided by the
LMS.Random Control software, with an amplitude level of 1×10−3 g across the entire excitation bandwidth.
The excitation bandwidth was defined between 0.1 Hz and 200 Hz, and the duration of each measurement
was defined as 3600 s to obtain one single FRC, for each case of nonlinear coefficient.

Figure 3: (a) Experimental setup for measurements; (b) image of one single nonlinear analog circuit.

Figure 4 illustrates the electrical scheme that corresponds to the circuit shown in Figure 3(b). The fixed
inductor is modeled as a pure inductance in series with a resistance that accounts for the internal losses.
From the twelve inductors used in the experiments, a mean resistance value of 2700 Ω was estimated. Such
a high inductor’s real impedance was compensated by using a negative impedance circuit, which features a
real negative component given by resistor Rd, and an imaginary negative component given by capacitor Cc,
the latter one actually being the negative capacitance that is formed with resistors Ra3 = Ra3c +Ra3m [24]
and Ra4.

3.2 Setup of the numerical simulations

The continuum was discretized into 120 FEs, which yielded structural matrices of size 242 × 242. In the
bandwidth of interest (0.1 Hz to 200 Hz), 9 flexible modes and 2 rigid-body modes have been found and
kept for composing the modal basis. For the proper representation of the antiresonances, 19 additional
flexible modes were added to the Galerkin projection basis. The lowest SC resonant frequency was found
as ωsc,1 = 5.04 Hz, whereas the lowest OC mode was found as ωoc1 = 5.14 Hz. This gives a generalized
electromechanical coupling, K2

eff , of 0.20. The piezoelectric capacitance of each piezoelement was obtained
as Cp = 52.29× 10−9 F.

The electrical parameters for the numerical simulations were obtained from the experimental measurements.
The inductances were numerically adjusted at 39 H (Lc) and 200 Ω (Rc), and the NC and nonlinear coef-
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Figure 4: Electrical diagram of the nonlinear shunt circuit.

ficients were directly taken from the experimental results. Since the experimental inductors are fixed, the
desired target frequency (wt = 100 Hz) for the attenuation bandgap was attained by using the residual ca-
pacitance provided by the negative capacitors. The desired target frequency at 100 Hz was experimentally
attained by setting all the negative capacitors to provide the overall effect of µ = −0.3025, where:

µ =
Cp

Cn
, (7)

in which µ is the residual capacitance rate. Since the NC is placed in series with the piezoelectric capacitance,
cf. Fig. 1(b), the residual capacitance, Cr should be calculated as follows:

Cr =
CpCn

Cp + Cn
, (8)

which enables the calculation of the attachments’ target frequency with given fixed inductors (Lc), by using:

wt =
1√
CrLc

. (9)

With the electrical parameters properly set, the electromechanically coupled and reduced matrices were
submitted to the time-domain integration routine using MATLAB’s ode113 function, with absolute and
relative error criteria set equal to 1×10−9. A point excitation of amplitude Fm = 5×10−02 N was imparted
to the numerical model, which provided the same amplitudes seen during the experiments. All the initial
conditions of both the structural (displacements and velocities) and electrical (electrical charges and currents)
DoF were set equal to zero. With a resolution of 0.1 Hz across the bandwidth of interest, 2000 periods of
the input harmonic load were integrated for each discrete input frequency (2000 discrete frequencies). The
sets of equations of motion were integrated with the aid of a large high-performance computer. The RMS
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value of the last quarter of the displacement and velocity time histories taken at both ends of the beam were
considered as the frequency-response curves. The transmissibility functions were eventually calculated by
dividing the mechanical output at the free right end by the mechanical input at the free left end.

3.3 Results

The transmissibility results of the nonlinear piezoelectric metastructure considering five levels of nonlinearity
(α = 5 × 1017, 1 × 1018, 5 × 1018, 1 × 1019, and 5 × 1019) and negative capacitances set equal to µ =
−0.3025 are shown in Figs. 5. The numerical results are illustrated by using continuous, bold lines, while the
experimental results are plotted on top of the numerical ones by using dashed, thin lines with circle markers.

The first plot at the upper left corner of the Figure shows the system dynamics when at open-circuit condition,
i.e. without shunt circuits, which evidences an excellent agreement between the numerical and experimental
results. This validates the accuracy of the structural and electromechanical matrices obtained through the
finite-element modeling procedures for the metastructure considering 12 piezo elements and the two attached
bare waveguides.
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Figure 5: NPMS transmissibility functions with µ = −0.3025, for a set of α values. Continuous lines show
numerical results and dashed lines with circled markers illustrate experimental results. Legend: OC: ;
α1 = 5× 1017: ; α2 = 1× 1018: ; α3 = 5× 1018: ; α4 = 1× 1019: ; α5 = 5× 1019: .

The second and third plots in the first row of Fig. 5 show the system dynamics with weakly nonlinear
attachments. The second plot displays the quasi-linear behaviors, where a linear, disorder-less attenuation
band is seen around the desired target frequency, ωt ≈ 100 Hz. It is worth noticing that the electromechanical
coupling for µ = −0.3025 is almost the same as if the attachments did not have NCs, which yields an
attenuation band with normalized bandwidth of ∆Ω = 1.74. The visual comparison between the numerical
and experimental curves reflects an excellent agreement between the results. Moreover, some experimentally
obtained attenuations imparted to the transmissibility peak immediately located at the right side of the linear
attenuation band have not been properly estimated by the numerical model (cf. Fig. 5(c)), yet the predictions
made for the two nonlinear cases being considered in this paragraph are quite accurate in terms of the overall
peak amplitudes and frequency regions at which the metastructure effects arise.

From the second α case onwards, both experimental and numerical results show incremental shifts of the
left cutoff frequency to higher frequencies. The moderately nonlinear cases given by α3 and α4 present
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good agreement between the numerical and experimental results. For the cases α3 and α4, a quite small
attenuation band is still predicted by the numerical model, which is also experimentally verified, cf. Fig. 5(d)
and (e), respectively. For the strongest α case shown in Fig. 5(f), the numerical model does not predict an
attenuation band anymore, but instead a bandwidth with unitary transmissibility, which is mostly verified by
the experimental result, except from a slightly large peak seen around 125 Hz that was not predicted by the
numerical model. This behavior may indicate that the experimental system should be measured with an even
slower acquisition pace, i.e. with longer random excitations, to actually converge to the steady state.

The multimode attenuation feature becomes apparent as from the nonlinear cases given by α3 onwards, cf.
second row of Fig. 5. In particular, cases α4 and α5, i.e., Figs. 5(e) and (f), respectively, are experimentally
seen to provide large attenuations around the transmissibility peaks located between 100 Hz and 150 Hz.
When these results are superposed onto the quasi-linear results, the multimode attenuation feature becomes
notably evident. The flat transmissibility response around the region of the underlying linear bandgap is
given by the nonlinear wave supratransmission phenomenon [26, 27] and nonlinear distortions around the
transmissibility peaks under strongly nonlinear coefficients [28, 29]. The mixed effects of nonlinear wave
supratransmission and attenuations, and the existence of the linear bandgap, are seen when the nonlinear
coefficients are set such that weakly and moderately nonlinear regimes are elucidated in the metastructure.

Next directions are given to investigate the effect of the negative capacitors, close to their stability bound,
in terms of the electromechanical coupling enhancement and reduction of the piezoelectric capacitance, in
order to cast the present Duffing-like nonlinear piezoelectric metastructure into a Nonlinear Energy Sink
(NES)-like one, with improved dynamics and wave propagation features. Figure 6 shows the numerical
transmissibility considering µ = −0.80. As the nonlinear coefficient increases, the range of low transmissi-
biity also increases.
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Figure 6: NPMS transmissibility functions with µ = −0.8000, for a set of α values. Continuous lines show
numerical results and dashed lines with circled markers illustrate experimental results. Legend: OC: ;
α1 = 1× 1019: ; α2 = 5× 1019: ; α3 = 1× 1020: ; α4 = 5× 1020: ; α5 = 1× 1021: .
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4 Conclusions

This paper reported the dynamical effects leveraged by introducing nonlinear shunt circuits in one-dimensional
locally resonant piezoelectric metastructures. A bending beam endowed with 12 piezoelectric elements under
several strengths of nonlinearity and negative capacitances was numerically and experimentally addressed.
The nonlinear piezoelectric metastructure was first modeled by using an electromechanical beam finite el-
ement. The nonlinear circuits were modeled by using the physical laws that govern the voltage in each
electrical component. After using an electromechanically coupled Galerkin projection, the reduced models
were submitted to Runge-Kutta-based time-domain integration under harmonic excitations. Linear and non-
linear frequency responses, for a set of nonlinear coefficients that leverage weakly, moderately, and strongly
nonlinear regimes, were discussed in the presence of negative capacitances. The comparisons between nu-
merical and experimental results evidence good agreement between both approaches.

The careful setting of the electrical parameters during the experimental campaign enabled linear and quasi-
linear, disorder-less attenuation bands that were confirmed by the numerical model. The five practiced levels
of nonlinearity showed incremental shifts of the left-side attenuation band cutoff frequency toward high
frequencies, to the extent that the underlying linear attenuation band became dominated by nonlinear wave
supratransmission. The moderately and strongly nonlinear regimes also elucidated multimode attenuation
capabilities. Although some minor differences between the numerical and experimental results were seen in
terms of predicting the experimentally attained attenuations, the numerical model proved largely useful to
study both linear and nonlinear behaviors of the nonlinear piezoelectric metastructure, even under weakly,
moderately, or strongly nonlinear regimes.
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