
Digital image correlations and deep learning: new
perspectives for experimental dynamics

N. N. Balaji 1, M. R. W. Brake 1, C. M. Jermaine 2

1 Rice University, Department of Mechanical Engineering,
Houston, Texas, USA

2 Rice University, Department of Computer Science,
Houston, Texas, USA

Abstract
Digital Image Correlation (DIC) is becoming increasingly popular since it presents a full field non-contact
experimental approach that is applicable in a variety of contexts. Since it necessitates the use of high-speed
cameras (for experimental vibrations), one needs to contend with the trade-off between spatial resolution,
temporal sampling, and maximum test duration. The present contribution presents an investigation of the
employment of deep learning for video-based experimental dynamics. A class of deep learning strategies are
employed to determine if an appropriately trained model can substitute DIC completely in an experimental
setting. Recent literature pertaining to quasi-static experiments have documented encouraging results where
such models have been shown to even outperform DIC. Networks using 2D convolutional ResNets (applied
on pairs of frames) are considered. Random vibration FRF testing conducted on beam-like structures is used
as an experimental benchmark to bring out the pros and cons of this approach.

1 Introduction

Digital Image Correlation, or DIC in short, has become a well-established full field experimental measure-
ment approach, especially in the structural mechanics community [1]. DIC has made it possible to use
optical measurements, i.e., frames from a video, to generate displacement and strain fields with comparable
accuracy as traditional contact sensing approaches involving strain gauges, PZTs, etc. DIC works by parame-
terizing frame-to-frame spatial correlations of the images (taken as a set of subsets) by a spatially piece-wise
displacement field and optimizing these parameters against the measured frames taken in sequence. The
approach has seen applicability in a vast variety of applications (see [2] for a recent review) including, more
recently, experimental modal analysis [3] (EMA).

One challenge with employing DIC for EMA lies in the need to synchronize the excitation (through an
impact hammer or an electrodynamic shaker) and the acquisition of the frames of video. Although this can
be managed using programmable acquisition systems, there exists a second, more acute issue. Most high-
speed cameras are limited by the amount of onboard memory, restricting the total number of pixels that can
be stored at any time. This places rather stringent constraints on the number of averages one can do, for
instance, for frames at a fixed resolution. It goes without saying that the framerate limitations of the camera
offer further constraints. Apart from these, owing to the large quantity of data that needs to be processed
for extracting information from such tests, the applicability of DIC as a real-time diagnostics/sensing tool is
fundamentally limited.

More recently, spurred by the successes in the deep learning community, studies have started appearing
in the literature applying deep learning to either assist or completely substitute DIC [4, 5, 6, 7]. While
the earlier studies [4, 5] focused on training deep neural networks to replicate the results of classical and
obtained results of varying accuracy and applicability, more recent ones [6, 7] have focused on employing
synthetic displacement fields to train the network. Ref. [7], for instance, have demonstrated that using such
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an approach, deep neural networks can provide comparable or even higher accuracy in the displacement and
strain field predictions in comparison to commonly available DIC software (VIC-2D, ncorr, Sandia’s DICe,
etc.). We will use this as the starting point for the current study.

The primary focus of the present study lies in the applicability of the deep learning network developed in [7]
for a dynamic test case involving data from EMA tests of an Aluminum beam undergoing random excitation
by an electrodynamic shaker (see section 2.1 for details). The local acceleration predictions will be compared
against data from a traditional accelerometer in both the time as well as frequency domains (FRF estimates).
The rest of the paper is organized into Methodology (in section 2), describing the deep learning framework
under consideration and the experimental setup; Results (in section 3) presenting the results of the application
of the deep learning approaches; and finally concludes with key discussions and observations (in section 6).

2 Methodology

Figure 1: DeepDIC DispNet Architechture (figure from Ref. [7])

In [7], an encoder-decoder architecture inspired by the so-called FlowNet [8], which is a very popular deep
neural network architecture for optical flow, was train to predict displacement and strain fields from speckled
image inputs. The network, shown in fig. 1, takes pairs of images (reference and deformed) as input, and
outputs horizontal and vertical displacement fields. Although the same has been done for strain predictions
too, we will restrict ourselves to the DispNet for the present study.

The network is trained using synthetically datasets generated in a manner similar to that described in [7], but
with parametric modifications that reflect the displacement (amplitude) regimes expected from the present
tests better. 40,000 128×128 pixel synthetic image-pairs are generated for the current study with speckle
patterns generated by arbitrarily oriented ellipses on a plane. Figure 2 shows the displacement distributions
as well as three sample data pairs and their displacement fields (shown in pixel units). This dataset is used to
finetune the model published by the authors 1.
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2.1 Experimental setup

An aluminum beam of dimensions 354mm × 25mm × 6mm is used for the studies in this paper. A pho-
tograph of the experimental setup is shown in Figure 5. The electrodynamic shaker is excited using band-
limited multi-sine signals through National Instruments serial cDAQ hardware, programmed using LabView.
A Phantom high speed camera is used for the acquisition. In order to synchronize the frames measured by
the camera and the vibration acquisition, trigger pulses are sent to an auxiliary trigger channel of the camera
to indicate the start of the experiment, after which both the cDAQ as well as the camera measure a fixed
number of samples/frames. All experiments are conducted with a sampling of 10.24 kHz, unless otherwise
mentioned.

Two types of experiments are conducted, with the camera focused on different regions of the beam, as shown
in fig. 4. As can be seen in the figure, different speckling techniques are used for both of these to ensure that
there are sufficient features in the images for the model to track.

1see https://github.com/RuYangNU/Deep-Dic-deep-learning-based-digital-image-correlation

(a)

Figure 2: (Contd. 1/2) Synthetic DataSet generated for the study: (a) sample image pairs along with their
displacement fields (in pixel units); (b-c) histograms of the maximum and standard deviations of the dis-
placement fields across the dataset.
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(b) (c)

Figure 2: (Contd. 2/2) Synthetic DataSet generated for the study: (a) sample image pairs along with their
displacement fields (in pixel units); (b-c) histograms of the maximum and standard deviations of the dis-
placement fields across the dataset.

Figure 3: Experimental setup for the Aluminum beam

(a)

(b)

Figure 4: The reference frame for the two tests performed: (a) Test 1, with the frame focusing on one half of
the beam; and (b) Test 2, with the frame focusing on the left end of the beam.

3 Results

Figure 5 presents the training and validation losses. The model is implemented in PyTorch [9] and an ADAM
optimizer (as implemented in PyTorch) is used for the training. The learning rate was fixed by conducting
cross-validation with single epochs training steps conducted at regular intervals. For this case, a learning rate
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of 3× 10−3 was fixed for the first 50 epochs and then reduced to 2× 10−4 for the last 100 epochs. In fig. 5
the MSE loss has as units pixels-squared, and the validation error is around 10−1px2, while the training error
is even smaller. This demonstrates that the model is now in a regime where it has low generalizability, i.e.,
it is being limited by the dataset. This indicates that the size of the dataset is not sufficient and has to be
increased. The authors are presently investigating an “infinite dataset approach” to check if the validation
errors improve. SANDIA’s open source Digital Image Correlation engine is employed for all the DIC studies
unless otherwise mentioned.

Figure 5: Training and Validation errors by epoch during finetuning. A learning rate of 3 × 10−3 was first
used, and this was reduced to 2× 10−4 after 50 epochs.

4 EMA results

Figure 6 shows the results of the first test conducted on the aluminum beam. The frame size is chosen to
be 94×1280 pixels. A total of 14 blocks, each with 6400 samples, are recorded, with the first two blocks
representing zero excitation (for noise estimation), and the last 12 blocks representing three different repeats
of random excitation, each conducted for four cycles (to remove transients). The Frequency Response Func-
tions plotted in fig. 6(b) show a good match between the DIC predictions and the accelerometer data for the
low frequency regime (until around 1000Hz), but the uncertainty in the DIC really starts accumulating at
higher frequencies than this.

5 Performance of the finetuned Deep-DIC for EMA

Figure 7 shows time-domain comparisons of the deep-learning model’s predictions against that of the clas-
sical DIC at approximately the same point in space. It can be seen that the DDIC approach predicts the
time-series in a manner that is nearly similar to the classical DIC, although it was trained fully independent
of DIC. This independence is also brought out by the fact that the DDIC predictions seem to have some
higher harmonics present in the response, which DIC seems to lack.

Figure 8 compares the frequency responses estimated with the data from the DIC, DDIC, and the accelerom-
eter measurements along with their uncertainties. It can be seen that the uncertainties of the DIC and DDIC
approaches are approximately similar, but the FRF predictions from the DDIC approach are only good around
the peak, showing that the DDIC approach performs rather poorly in the frequency domain.

Similarly, fig. 9 presents the time and frequency domain results for test 2. In this case the DIC and DDIC
predictions match near exactly. This could be due to the fact that the speckle pattern opted for this case is
more similar to the training data than in test 1. In this case no accelerometer was placed near the end of
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(a)

(b) (c)

Figure 6: Results from the EMA carried out using DIC for Test 1: (a) frequency response estimates from
a vibration accelerometer compared against DIC. Also plotted are the uncertainties (standard deviations
from averaging) for each case; (b) time-domain view of acceleration, displacement and trigger. The different
blocks are separated by vertical lines with the colors denoting the repeats; and (c) the first (green) and second
(blue) mode shapes estimated from DIC against.

the beam so only the DIC results are shown (in pixel units). Once again it can be observed that there is
significant uncertainty present for frequencies more than around 300Hz.

Table 1: Total computational processing time taken for DIC and DDIC for the two tests

Frame Size Num. Frames DIC DDIC Speed-up
Test 1 96×1280 89,600 22,750 s 12,527 s 1.8x
Test 2 128×128 652,800 247,500 s 17,033 s 14.53x

Lastly, the computational efforts involved in employing DIC and DDIC are compared in table 1 along with
the net speedup that DDIC provides. It can be seen that in both the cases the DDIC approach offers a good
speed-up in comparison to DIC. However, this seems to be critically dependent on the frame size. The
scaling of the convolutional neural network in comparison with the scaling of the DIC implementation with
frame size has to be investigated further in order to determine in which cases the use of DDIC provides a
considerable advantage over DIC.
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Figure 7: Time domain comparisons of the DIC and Deep-DIC (DDIC) predictions for test1

Figure 8: FRF comparison of the estimations carried out using DIC, DDIC, and accelerometer measurements
along with uncertainty estimates.

6 Conclusions

A Deep Convolutional Neural Network was finetuned and applied for experimental modal analysis. The first
conclusion is that the Deep-DIC (DDIC) approach seems to be, at worst, a very computationally efficient
alternative to DIC. This is brought out by the very promising accuracy of DDIC while offering up to around
15x speed-ups in computation times. However, the performance of both the DIC & DDIC for EMA is still
quite unsatisfactory and is the subject of ongoing research.

One aspect that requires improvement is the fine-tuning of the network. A clear training-validation diver-
gence was observed during this study, indicating that an “infinite dataset” formulation could offer better
results. Another aspect is that the neural network used here merely compares a single reference frame with
multiple “deformed” frames, i.e., the DDIC is applied pair-wise, with no dynamics built in. Alternative ar-
chitectures that can capture the spatio-temporal correlations (like 3D CNNs) can be explored in the future
for improvements.
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(a)

(b)

Figure 9: (a) Time domain and (b) Frequency responses from test 2 comparing the results from DIC and the
Deep-DIC implementation.
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