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Abstract
The Masing conditions establish a criterion to relate the loading curve of a hysteretic system to its complete
hysteresis loop. For the field of joint mechanics, where the hysteresis describes the dissipative, tangential
behavior within an interface, the Masing conditions allows for significant computational savings. In practice,
though, jointed systems experience time varying normal forces that can modify the tangential behavior of the
system. Consequently, the hysteretic behavior of the system does not adhere to the Masing conditions. In this
work, this discrepancy between the Masing conditions and behavior exhibited by real systems is explored.
Specifically, an additional condition is introduced that results in a manifold, which spans the tangential
displacement-tangential force-normal force space. Several prototypical systems are investigated, and the
preliminary results show that the hysteresis of these systems conforms to the three dimensional manifold
even though it does not conform with the original Masing conditions.

1 The Masing conditions

The Masing conditions [1, 2, 3, 4] stipulate that, for steady state responses, the hysteretic behavior of a
system can be uniquely determined from the loading curve formed by taking a system at rest and loading it
to its maximum steady state displacement. This loading curve is related to the steady state hysteresis loop
via

1. The forward portion of the hysteresis loop is identical to the initial loading curve except that it is
scaled by a factor of two such that it begins at the smallest displacement and extends to the largest
displacement (which is typically from −umax to +umax).

2. The reverse portion of the hysteresis loop is identical to the forward portion, only rotated 180◦ with
respect to the center of the hysteresis loop.

3. The hysteretic response is determined from the last point of the loading cycle before a reversal; if the
loading curve crosses a previous loading curve, then it must conform to the previous loading curve.

These conditions are illustrated in Fig. 1.

The use of the Masing conditions greatly simplifies the calculation of hysteretic behavior as only the initial
loading curve needs to be calculated in order to deduce the entire hysteresis loop. In particular, this is
the fundamental concept behind the use of quasi-static modal analysis [6, 7] for calculating the hysterestic
behavior of a jointed system. If the Masing conditions cannot be used, then it can be five times more
expensive to calculate the hysteretic behavior of a system [5, 8] as the initial loading curve, first unloading
curve, and first reloading curve all need to be calculated. This is the difference between only calculating
the curve shown in step one of Fig. 1 and calculating all of the curves shown in steps one, two, and three of
Fig. 1.
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Figure 1: Illustration of the Masing conditions. The curves in steps two and three are scaled (and rotated)
versions of the curve in step one. Modified from [5].

2 Breakdown of the Masing conditions

In real jointed structures, the normal force across an interface is known to vary during excitation [9, 10].
As a result, the tangential friction force, which is often conceptualized as being related to the normal force
by a scalar (i.e., Coulomb’s friction coefficient, µ), is modulated during excitation. This can result in non-
symmetric hysteresis loops that violate Masing’s conditions, as shown in Fig. 21.

Figure 2: Hysteresis loops from a tribomechadynamics model of a jointed interface in which the normal load
is allowed to vary throughout the simulation due to the external excitation. Modified from [11].

At the elemental level, the hysteretic model for the loops shown in Fig. 2 could be described as elastic dry
friction. Similar to a Jenkins element, elastic dry friction is defined for the initial loading curve2 as

f =

{
kTu(t) kTu(t) < µN(t)
µN(t) Otherwise

(1)

1For details of how these hysteresis loops were calculated, the reader is referred to [11, 8].
2For simplicity, the equations are only provided for loading from rest until a maximum displacement.
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in terms of the tangential stiffness kT , displacement u, time t, and normal force N . As µN(t) is non-
constant, this results in a hysteresis loop that can collapse (i.e., go to zero as the interface separates), have
sudden spikes (e.g., when a pressure wave propagates across the interface), or even exhibit a slip force that
decreases with time for one portion of the loading curve but not the other (e.g., the bottom left hysteresis
loops in Fig. 2). These observations lead to the hypothesis:

Hypothesis: If the Masing conditions accounted for time varying normal force then they would
be more broadly applicable to real jointed structures.

If this hypothesis is supported, then the modified Masing conditions would result in a response manifold that
governed the hysteretic, steady-state behavior of a system. A two-dimensional section of this manifold for a
constant normal force would result in the original Masing conditions. However, once the normal force begins
to vary, the tangential force-displacement response must be extended into the third dimension, normal force.

3 Criteria to remain on manifold

3.1 Normal load decreasing in stuck section

Upon load reversal, the equation of the manifold is

fmanifold = kt(u(t)− u0) + sign(f0)µN(t) (2)

This must be equal to the equation of the current force which is evaluated as

feldry = kt(u(t)− u0) + sign(f0)µN0. (3)

This will only be satisfied if µN0 = µN . This leads to frequent deviations from the manifold in the model.
The force feldry is consistent with an anchor and spring representation of the friction model (with varying
normal load), so it is not clear what the physical interpretation of using the fmanifold would be.

Alternatively, the manifold may be modified such that the hysteresis loop remains on the manifold. This
would consist of oscillating between equal anchor displacements (i.e., points where the tangential force is
zero). This means that equality is achieved in the above equations by varying u0 as a function of N . For
the single slider representation, this would result in larger oscillation amplitudes at higher normal loads.
However, such a model does not necessarily make physical sense where amplitudes of vibration would be
expected to be higher for less normal and thus less tangential force resisting vibration. Furthermore, such a
modification to the manifold is not possible for two or more elements in parallel since they would generally
require different displacement amplitudes. Oscillating between equal anchor displacements also requires the
condition that

d

dut
[µN ] ≥ −kt ∀feldrysign(u(t)− u0) < 0 (4)

This prevents the anchor from slipping in the opposite direction of motion due to a rapid drop in normal force
immediately after reversal.

3.2 Normal load increasing in slipped section

The update for elastic dry friction indicates that the fastest rate of increase possible in tangential force is kt.
To remain on the manifold, once the system has started slipping it must remain slipping until the next reversal
point. This requires that the tangential force always increase as fast as µN . This results in the condition that

df

dτ
=

d

dτ
[µN ] (5)
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for a dummy variable τ used to parameterize the displacement and load histories. This can be converted to

d

dut
[µN ] =

df

dut
≤ kt. (6)

While this condition can be satisfied for a range of harmonic amplitudes of N , the condition must hold for
all times that the system is slipping. Therefore, phase differences between N and ut can easily result in
violations of this condition.

4 Preliminary simulations

To test the hypothesis, a series of numerical experiments are proposed. In this extended abstract, the first
of these, a single degree of freedom oscillator with a time varying normal force, is considered. The friction
behavior of the oscillator is described by the elastic dry friction element (Eq. 1). Assuming arbitrary param-
eters (µ = 0.1, umax = 1, kT = 1, and tangential displacement frequency ω = 2π), the Masing manifolds
are able to be calculated for a number of different normal force functions. As shown in Fig. 3, these include
a constant normal force (N = 5, Fig. 3(a)-(b)), and sinusoidally varying normal forces of N = sin(ωt) + 5
(Fig. 3(c)-(d)), N = sin(2ωt) + 5 (Fig. 3(e)-(f)), and N = max(0, 4 sin(2ωt) + 3) (Fig. 3(g)-(h)).

In order for the hysteresis loops to remain on the Masing manifold, there is one caveat: the force at reversal
that the subsequent loading cycle is based upon must scale with the time varying normal force. That is, upon
a load reversal that occurs at a displacement u0 with force f0, the subsequent loading cycle is governed by

f =

{
kT (u(t)− u0) + sign(f0)µN(t) |kT (u(t)− u0) + sign(f0)µN(t)| < µN(t)
µN(t)sign(u(t)− u0) Otherwise

(7)

for a system that is slipping. Without this condition, the hysteresis loop deviates from the Masing manifold
during the stuck phase of the loading cycle. For this particular hysteresis model, the stuck regime is inde-
pendent of the normal force. Thus, no further scaling is needed for a system that never slips. For a more
general hysteresis model, in which the tangential stiffness/stuck regime depends upon the normal force, a
relationship similar to Eq. 7 can be derived.

The hysteresis loops shown in Fig. 3(a), (c), (e), and (g) each fall upon the corresponding Masing manifolds.
In some cases, such as for N = sin(ωt) + 5 (Fig. 3(c)-(d)), the hysteresis loop is not symmetric. As the
form for N(t) becomes more complicated, the deviation of the hysteresis loops from the one formed by the
traditional Masing conditions (i.e., N = 5, Fig. 3(a)-(b)) increases; however, each of the four hysteresis
loops still conform to the Masing manifold.

5 The revised Masing conditions

Based on the preliminary work shown here, in which the fundamental hypothesis relating the Masing condi-
tions to the normal force cannot be rejected, a revision to the Masing conditions, collectively referred to as
the Masing manifold, is proposed. For the steady-state oscillation of a system between two extremum, the
resulting hysteretic behavior is described by the manifold in the tangential displacement-tangential force-
normal force space constructed according to:

1. In order to consider constructing a Masing manifold, it is paramount that the hysteretic behavior for a
constant normal force conforms to the Masing conditions (this implies that Bouc-Wen models will not
be generally admissible).

2. The initial loading curve is defined as the tangential force-tangential displacement relationship, pa-
rameterized in terms of the normal force, calculated from rest to the maximum displacement.
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Figure 3: Hysteresis loops and Masing manifolds for (a) and (b) constant normal force, (c) and (d) sinu-
soidally varying in phase normal force, (e) and (f) sinusoidally varying normal force at twice the frequency
of the tangential displacement, (g) and (h) sinusoidally varying normal force that goes to zero. All results are
from the elastic dry friction model. The black curves on the right plots are the projections of the hysteresis
loops onto the N = 0 plane for visualization purposes.

3. The forward loading curve of the hysteresis loop is the initial loading curve scaled by a factor of two
(to account for oscillating between −umax and umax) and terminating at the same location as the
initial loading curve.

4. The backward loading curve of the hysteresis loop is identical to the forward loading curve rotated
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180◦ about the origin, beginning at the end of the forward loading curve and ending at the start of the
forward loading curve.

5. As the normal force changes, the reference force from the last load reversal must scale with the normal
force.

While this preliminary work has demonstrated the concept of a Masing manifold for the simple, elastic dry
friction hysteresis model, it still must be generalized to other friction models. Thus, future work must seek
to assess the validity of the Masing manifold for studying both more complex hysteresis models (such as
Bouc-Wen and Iwan models), and more complex system models (e.g., [12]).
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