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Abstract
Unlike single input reconstruction, the inverse problem of determining several input time histories poses the
challenge of retrieving a unique solution that accurately describes the real input allocation in the system. In
many instances, different combinations of inaccurate force functions might satisfy the system of equations
of the estimator being used. In this work, an experimental impulse response matrix deconvolution is adopted
in order to estimate simultaneously: 1) the force applied by a hammer impact and 2) a constant zero force at
two different locations of a vehicle sub-frame. The data driven nature of an impulse response filter carries the
benefit of robustness against complex boundary conditions and avoids the need of calibration of a numerical
model. Additionally, the deconvolution implementation relies purely on affordable sensor data commonly
gathered during experimental modal analysis. The proposed validation case presents the effects induced by
different types of sensors in the estimation of multiple forcing functions.

1 Introduction

System input estimation has been traditionally known as an ill-posed problem that typically requires the
inversion of a linear system of equations that may not guarantee a unique solution. The system of equations
relates the initial conditions of the structure, the unknown inputs and the measurements. Typically, such
mathematical representation is achieved by finite element (FE) modelling. However, the effect of the time
elapsed between the system excitation and the observed responses of the system is commonly not considered.
This is due to the fact that such models assume that the transfer of information from the input location to
the output location takes place instantly [1], which means that they cannot capture dead-time. Equivalent
non-parametric representations can also be built purely from measured data [2]. With the advantage that any
measured signal intrinsically contains the dead-time information.

FE-based estimators have been widely discussed in literature [3, 4, 5, 6]. Many of these schemes bring
advantages in terms of stability and identifiability. However, the updated models used in such estimators
have to accurately describe the response of the system in order to obtain satisfactory input estimates. There-
fore, accurate input estimation becomes challenging when the structure considered is difficult-to-model (e.g.
complex boundary conditions, high modal density, complex damping phenomena, etc.) and only a rough
approximation of the system response is achievable. This work explores the use of an experimentally identi-
fied impulse response filter (IRF) as a non-parametric alternative to circumvent the issues of dead-time and
modelling errors common in FE models. Particularly, to estimate multiple inputs in the setup of a vehicle
subframe.

Ill-conditioned behaviour arising from noisy measurements is commonly addressed with Tikhonov regular-
ization methods [7]. Classically, the regularized input estimates are obtained by minimizing a weighted sum
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of the norms of the residual and the solution, and the weighting constant is referred to as the regularization
parameter. In some instances, regularization schemes can be avoided when the data collected contains rela-
tively low levels of noise or after performing low-pass filtering of the noisy observations and the estimated
inputs. In this work, the signals acquired lie mostly in the first category (i.e. low noise levels) avoiding the
need of regularization.

The objective of this paper is to explore the benefits of the IRF and investigate the effects of using different
types of sensors to retrieve estimates of forces acting simultaneously. The mechanical system considered is
complex enough such that a model-based approach would be prohibitive to retrieve accurate input estimates.
The IRF is run with information acquired from sensors commonly used for experimental modal analysis such
as accelerometers and strain gauges. Moreover, the sensors are installed in a non-collocated layout which
implies asynchronous observations are collected. Some studies have particularly addressed non-collocated
input estimation [8], [9] with mixed results. The paper is divided in three main sections. Section 1 covers
the theoretical formulation of the impulse response filter. In section 2 a brief description of the study subject
is presented along with the setup used for measurement acquisition. Lastly, the results of the experimental
work and the IRF estimator are shown and discussed in section 3.

2 Impulse response matrix deconvolution

The inverse problem of force reconstruction lies in the identification of a set of unknown excitation forces f ,
given an impulse response matrix G and a vector of observations y. For a linear, time invariant system, the
relationship between the input and the output observations at any instant in time is given by the following
convolution operation [2]:

y(t) =

∫ t

0
G(t− τ)f(τ)dτ (1)

Where the matrix G can be interpreted as the response of the system when such system is excited by a unit
impulse (i.e. a Dirac δ function). Typically, the unit impulse responses are obtained by means of numerical
simulation, however, the numerical representation of an infinitely short impulse requires workarounds that
might be cumbersome. Moreover, if the model available is only a rough approximation of the real system,
the input estimation errors may become staggering. Generally, Eq. (1) is solved using measured sampled
data. Thus, it can be discretized for ns time-steps (∆t) as:
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Where each entry of the impulse response matrix

Gt =



G11 . . . G1j

... . . .
...

Gi1 . . . Gij



t

is the unit impulse response at a particular time instant t = 0 . . . ns for all input-output combinations, yi is
the i-th component of the vector of output measurements and fj is the j-th component of the vector of input
forces. The indices i and j represent the number of output and input signals, respectively. In this work both
input and output are assumed to have the same number of temporal samples ns.
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Alternatively, the G matrix can be identified experimentally by measuring the responses of the system to
a hammer excitation. The hammer excitation is also referred to as quasi-impulse (QI). Even though the
quasi-impulse is not a perfect Dirac impulse, the resulting estimated quasi-forces can still be transformed
into impulsive terms. In this work G is obtained experimentally in order to avoid the inherent issue of model
accuracy of a model-based estimation. Based on Eq. (2), it is possible to retrieve the forces by taking the
pseudo-inverse of the impulse response matrix and multiplying by the vector of output measurements as
follows:

f = (∆tG)†y (3)

Computing the pseudo-inverse requires a determined system of equations. Ideally, an over-determined sys-
tem of equations will provide additional noise reduction, therefore the amount of inputs to be determined
should not exceed the amount of measurement sensors available. For the applications considered in this
work, the length of the time signals considered does not constitute a prohibitive factor to compute the pseudo-
inverse for the full time series. An important advantage of constructing the impulse response matrix using
measured data, as is proposed in this work, is that the dead time of the transfer of information between the
input and output is embedded into the acquired signal data. This contrasts with the use of a finite element
model to build the G matrix that inherently does not account for this dead time [1].

2.1 Transformation of quasi-impulses into impulses

In this technique, hammer excitations are practical representations of a Dirac impulse, however, the mea-
sured responses obtained are product of a quasi-impulse and not of a perfect Dirac impulse. Therefore, an
additional transformation is necessary. The objective is to compute the equivalent impulsive terms from the
quasi-impulsive terms obtained from Eq. (3), this operation is given by the following convolution:

f̂(t) =

∫ t

0
fQI(t− τ)f∗(τ)dτ (4)

Similar to Eq. (2), this expression can also be discretized as:
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(5)

Eq. (5) allows the computation of the actual input force estimates f̂ by means of the convolution of the
quasi-impulses measured experimentally

fQI
t =




fQI
1 0 . . . 0

0 fQI
2 . . . 0

...
...

. . .
...

0 0 . . . fQI
j




t

and the quasi-impulsive inputs computed from Eq. (3) that from now on we will refer to as f∗.

f̂ = ∆tfQIf∗ (6)
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The convolution described by Eq. (6) acts as a low pass filter that reduces the contribution of high frequency
components into the estimates. Even though, the measured quasi-impulses fQI are forces in newtons [N],
in order to make the convolution consistent units-wise, fQI is considered unit-less; and f∗ have force units
consistent with the hammer measurement settings. No normalization is required to perform the convolution.
In general, the implementation of an experimental impulse response filter has the advantage of not requiring
extended model updating. It is worth mentioning that even though the impulse response filter does not
require tuning additional parameters, regularization schemes may still be necessary in some cases to treat the
inherent ill-conditioned behavior of the problem in Eq. (2).

3 Study case: Vehicle sub-frame

A test rig of vehicle sub-frame connected to a supporting frame (see Fig. 1) is used in this study to estimate
the forces induced in the system. The forces act in the structure simultaneously at the locations shown
in Fig. 1(c). Moreover, a total of seven sensors were glued at different positions over the surface of the
sub-frame. The type of sensors selected consists of three uni-axial lightweight accelerometers, two tri-axial
accelerometers and two strain gauges.

(a) (b)

(c)

Figure 1: (a) Frame and sub-frame assembly. (b) Sub-frame close-up and sensor deployment. (c) Sensor
layout (not to scale) including excitation locations where the forces are estimated.

3.1 Multiple input estimation

The objective of this validation case is to estimate two force functions at two different locations of the
assembly. The first function corresponds to a hammer impact that excites all the system’s frequencies up to
300Hz, while in the second location a constant zero force is to be retrieved. The non-parametric model built
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herein assumes that the system behavior is linear, and ideally have limited amount of DOFs. This alleviates
the computational time needed and the amount of measurements necessary to retrieve correct force estimates.
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Figure 2: Comparison of the estimated and experimentally measured forces at two locations using (a, b)
acceleration signals and (c, d) strain signals

Reference and impulse response measurements are obtained experimentally to construct the IRF non-parametric
model. The measurements obtained at the DOFs of interest contain relatively low levels of sensor noise. The
amplitudes of the noise are particularly low for the strain gauges that would typically be represented with a
noise covariance of roughly 10−16ε2. The time-step is 0.39ms and the total estimation time is 3.2s. However,
the force estimates are plotted for a snapshot of time of 0.05s when the peak impact force is acting. Three
estimation cases using different sensor data are discussed in the following:

• Acceleration-only measurements.

• Strain-only measurements and

• Combined acceleration and strain measurements.

When only acceleration signals were used in the estimator, Figs 2(a) and 2(b) show that the reconstructed es-
timated forces are significantly deviated from the measured forces in terms of peak amplitude and additional
transients emerging in the estimated force signal. In contrast, the reconstructions made involving only strain
measurements (Figs 2(c) and 2(d)) contain less transients and the peak amplitude of the impact is slightly
over-estimated. These observations are consistent with other techniques explored in literature that indicate
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problems of drift and conditioning when only accelerations are used [4, 6]. However, in this particular case,
the lack of accuracy in the acceleration-based estimation is attributed mainly to the accumulation of errors in
the deconvolution process product of the noise embedded in the signals which reduces the conditioning of the
problem. The noise associated with the strain sensors is relatively lower which represents an improved esti-
mate. Finally, if both strains and accelerations are combined with an appropriate scaling of the units of any
of the two types of sensors used to avoid numerical instabilities. Then, it results in the reconstruction shown
in Figs 3(a) and 3(b), the estimated force has a diminished presence of transients with lower amplitudes,
and the peak impact force is almost in line with the measured one. In general, appropriate combination of
information coming from different sensor types improves the conditioning of the problem and may balance
out the noise contribution in case of sensors with less expected quality in the data.
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Figure 3: Input estimation using a combination of acceleration and strain signals (a) Impact force. (b)
Constant zero force.

4 Conclusions

In this study, an impulse response filter process has been explored by means of experimental identification
to provide a reliable and accurate force identification scheme for dynamic structures. Different types of sen-
sors were incorporated into the IRF and the method has been validated using a vehicle sub-frame subjected
to complex boundary conditions. The experimental IRF approach showed reliability and accuracy for dy-
namic force estimation under difficult-to-model conditions. When only acceleration measurements, which
are cheap and easy-to-obtain in practice, were used, the IRF was found to be lackluster due to the measure-
ment noises and low frequency components of the force. Use of strain measurements resolves the stability
issues. Furthermore, strain measurements are equivalently easy to deploy and practical in many cases. As a
remedy to the inaccuracy and instability with the force estimation problem, a combination of both acceler-
ation and strain measurements was studied providing satisfactory input reconstruction. Additionally, it was
observed that using only strain measurements for IRF can estimate the low-varying components of excitation
with good accuracy. This compensates the performance when using accelerations alone.
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