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Abstract
Engineering applications often depend on multiple parameters, leading to a need for increasingly complex
problems to be solved by numerical methods. The use of so-called parametric reduced-order models, based on
the underlying physics, has proved to be an efficient approach to address a prohibitive computational cost with
increasing dimensionality of the parametric space, while offering the prospect of an accurate approximation of
the original problem. In this contribution, a multivariate version of the well-conditioned asymptotic waveform
evaluation (WCAWE) algorithm is presented, namely the MWCAWE, in order to extend its applicability
to parametric problems. It is applied in an adaptive algorithm based on a residue-based contour following
approach. This algorithm computes reduced-order models of bi-variate acoustic problems where frequency
and a material parameter are considered. A poro-acoustic application is presented, highlighting the potential
of the multi-interval strategy for parametric applications.

1 Introduction

Engineering applications, such as optimisation, design and control problems, often require multiple, fast
evaluations of solutions associated with numerical models depending on multiple parameters, such as the
driving frequency or material properties. These may be efficiently performed with the introduction of surrogate
models approximating the input-output behaviour of the original system while retaining the dependency
on certain model parameters. For this purpose, a wide range of parametric model order reduction (pMOR)
approaches have been proposed and investigated in the recent years [1]. Among these, projection-based
methods occupy a central place, essentially consisting of global and local approaches. While local pMOR
methods focus on multiple local reduction matrices to be interpolated in order to determine a new reduced-
order model [2, 3, 4], global pMOR approaches generally perform recombination of projection matrices to
generate a single representative projection matrix [5, 6, 7].

In this paper, we present the Multivariate Well-Conditioned Asymptotic Waveform Evaluation (MWCAWE).
It is a projection-based global pMOR approach extending the established Well-Conditioned Asymptotic
Waveform Evaluation (WCAWE) method [8, 9], which has proved to be an efficient approach for frequency
sweep problems [10, 11]. WCAWE ensures rational interpolation up to an arbitrary order at certain expansion
points in the frequency domain. The gist of extending WCAWE to MWCAWE is to also consider derivatives
of the system regarding the other parameters which should be retained in the reduced space, here for instance
a material parameter. The MWCAWE basis computation involves combinations of derivatives regarding the
involved parameters at each expansion point in the considered parameter space. It follows a recombination

2057



and truncation step which ensures an appropriate size of the reduction bases corresponding to each expansion
point. Multiple local bases are combined in the global pMOR approach both to increase the accuracy locally
and for the complete parameter space. Although a global pMOR method may lead to larger reduced-order
models, accuracy of the approximation and computational cost associated with the projection basis generation
may justify the choice of a global method over a local approach.

The rest of the article is structured as follows: In section 2, the MWCAWE approach is presented, after a
summary of the original WCAWE algorithm. The proposed algorithm for a multi-interval strategy is proposed
in section 3, including a residue-based error estimator and a contour-following approach for the bivariate case.
A poro-acoustic application is then presented in section 4, showing the ability of the MWCAWE approach to
provide a good approximation over the entire parametric domain of interest.

2 Introducing the MWCAWE

2.1 The univariate WCAWE

The starting point of the WCAWE-based parametric sweep is given by a linear system,

Z(x)u(x) = f(x), (1)

where x may be a vector of Nx independent variables corresponding to the parametric problem of interest
including, e.g. the angular frequency ω, material parameters, etc. For the original univariate case discussed
in [8], this vector reduces to a scalar such that x = x1. In a finite element (FE) problem, Z(x) ∈ CNn×Nn

represents the system matrix of the discretised problem and u(x), f(x) ∈ CNn the solution vector and the
vector of externally applied loads, respectively.

As Nn is typically large, the computational cost of solving eq. (1) can be reduced by finding a system

Zsn(x)αsn(x) = fsn(x), (2)

of much smaller dimension NV whose solution vector approximates the solution to the original system in a
subspace spanned by a matrix V ∈ CNn×NV , such that

u(x) ≈ ûsn(x) = Vαsn(x). (3)

This projection-based approach, allowing the solution of a reduced set of equations in order to obtain an
approximation for eq. (1), relies on the efficient construction of the reduction matrix Vsn . A proper choice of
Vsn emerges from successive derivatives of the solution vector in eq. (1) at a specific point in the parameter
space x = sn, sn = (x1n, · · · , xNxn) being further referred to as the n-indexed reference point of Vsn .
For the original univariate case, i.e. associated with the WCAWE algorithm, Nx = 1 and this reference
point reduces to the scalar sn = x1n. The WCAWE algorithm [9, 8] provides a robust generation of this
sequence of successive derivatives, overcoming the inherent ill-conditioning of the direct approach which is,
e.g., used in the computation of the component-wise Padé approximants [12, 13, 11] and in the generation of
Nested Padé approximants [14, 15]. The resulting well-conditioned reduction matrix Vsn , consisting of NV
orthonormalised basis vectors, allows for a robust, non-stagnating convergence upon increasing the size of the
subspace spanned and ensures eq. (3) in the vicinity of x = sn. This projection

VH
snZ(x)Vsnαsn(x) = VH

snf(x), (4)

with Zsn(x) = VH
snZ(x)Vsn and fsn(x) = VH

snf(x) leads to the reduced system eq. (2). The superscript
(·)H denotes a Hermite transpose. In the context of an FE solution, eq. (4) is advantageously solved if the
system matrix involved in the transformation, Z(x), is not reevaluated after an assembly procedure for each
set of parametric vectors x, but rather broken down in a linear combination of x-independent global matrices.
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2.2 The multivariate MWCAWE

A generic expression of the multivariate WCAWE algorithm (referred to as the MWCAWE in the following),
as proposed in this contribution, may be given in x = sn by the following recursive, multiple right-hand-side
(RHS) procedure adapted from the univariate case in [9, 8, 16],





Z(0)v1 = F(0)

Normalisation v1 −→ v1

Z(0)v2 = F(1)eT1PQ1(2, 1)e1 − Z(1)v1

Orthonormalisation v2 −→ v2

...

Z(0)vn =




(n−1)∑

j=1

(
F(n)eT1PQ1(n, j)en−j

)
− Z(1)vn−1

−
(n−1)∑

j=2

(
Z(j)vn−jPQ2(n, j)en−j

)



Orthonormalisation vn −→ vn

...

Z(0)vNV =




(NV−1)∑

j=1

(
F(NV)eT1PQ1(NV, j)eNV−j

)
− Z(1)vNV−1

−
(NV−1)∑

j=2

(
Z(j)vNV−jPQ2(NV, j)eNV−j

)



Orthonormalisation vNV −→ vNV

(5)

where a modified Gram-Schmidt orthonormalisation step is performed between each vector generation by the
multiple RHS systems in eq. (5), and where

• Z(k) stands for the differentiation of the system matrix Z in x = sn to the “cumulative” multivariate
order k, regardless of the distribution of these partial derivatives between the independent variables xj ,
j = 1, . . . ,Nx. In other words, given the notation ∂

ij
xj (·) for the partial derivative with respect to xj at

order ij , and the convention ∂0
xj

(·) = (·), then Z(k) results from the summed partial derivative orders
such that

Z




Nx∑

j=1

ij



=




Nx∏

j=1

∂
ij
xj


Z, (6)

with the aforementioned convention implying that Z(0) = Z (dependency on x omitted).

• ek is a unitary standard basis vector associated with the kth component of the solution vector,

• vk is the non-orthonormalised vector generated in the kth iteration of the procedure,

• vk is the basis vector orthonormalised against vk−1, generated after the kth iteration of the procedure,

• PQω(α, β), ω = 1, 2, corresponds to the RHS correction terms, chosen to be associated with the
modified Gram-Schmidt orthonormalisation process [8].

The resulting orthonormalised and non-orthonormalised bases, Vsn = [v1 · · ·vNV ] and Vsn = [v1 · · ·vNV ]
respectively, are related by

Vsn = VsnQ
−1, (7)

where Q is an NV × NV upper triangular, non-singular matrix containing the modified Gram-Schmidt
coefficients. More precisely, column k of Q contains the successive coefficients resulting from the projection
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Figure 1: Illustration of three possible bivariate derivation paths for the system matrix Z up to the ”cumulated”
order of partial derivatives (Nx1 + Nx2).

of the partially orthonormalised vk on the orthnormalised vectors vj , j < k, and Qkk corresponds to the
norm of vk before its normalisation. The correction terms PQω(α, β), ω = 1, 2, are given by the following
product of block matrices extracted from Q,

PQω(α, β) =

β∏

t=ω

Q−1
[t:α−β+t−1,t:α−β+t−1]. (8)

Further discussions on the choice of the RHS correction coefficients other than associated with the Gram-
Schmidt coefficients, may be found in [8]. The approximated solution may be evaluated at all degrees of
freedom (DOFs) from the generalised coordinates vector αsn(x) following eq. (3).

Adapting the WCAWE algorithm from univariate to multivariate problems involves the generation of sequences
of RHS vectors emerging from sequences of iteratively differentiated matrices Z(k). The choice adopted
here is to generate such sequences independently, thus generating a set of NΣ bases

{
V1

sn , · · · ,VNΣ
sn

}

associated with NΣ sequences of iteratively differentiated matrices Z(k). Z(k), k = 0, ... NV − 1, represents
the differentiated system matrix to a “cumulated” multivariate partial derivative order k, see the associated
procedure of sequences of differentiation, for the bivariate case, illustrated in fig. 1. These bases, in principle
all of the same size NV

1, each consist of orthonormalised basis vectors. However, these are naturally not
mutually orthonormalised from one basis to the next. Additionally, it is not guaranteed that the NΣ-sequences
produce linearly independent subsets of vectors upon merging the resulting bases. A simple way to ensure
this, as well as to reduce the basis to a minimum number of basis vectors, is to proceed with a compression, or
a component selection, via a Singular Value Decomposition (SVD) of the merged set of bases [17, 18]. Either
way, the initial step consists in an SVD of the merged basis after concatenation, Vmer

sn =
[
V1

sn · · ·VNΣ
sn

]
,

resulting in

Vmer
sn =

NVmer∑

i=1

σiw
l
iw

r
i
T, (9)

where NVmer ≤ NVNΣ corresponds to the total number of basis vectors in Vmer
sn and σi, wl

i, and wr
i correspond

to the singular values and left and right singular vectors, respectively.

From the SVD, either the (left) singular vectors associated with the highest singular values are selected as the
components of the final local reduction matrix, or the compression of the merged basis associated with the
highest singular values is performed from the selected left singular vectors, right singular vectors and their
corresponding singular values. Here the former approach is used, such that assuming a descending-ordered

1Strictly considered, the size of the bases in this NΣ-sequence decreases by a dimensionality-dependent number of vectors for each
basis added to the sequence, due to the partial overlap of consecutive sequences, see, e.g., fig. 1. This point is however marginally
relevant here given the SVD step involved in the subsequent processing of these bases, see eqs. (9) and (10).
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sequence of singular values
(
σ1 · · ·σNVmer

)
, the reduced, merged basis V∗

sn is

V∗
sn =

{
wl

i | i ∈ (1,NVmer) ∧ σi ≥ σthresh
}
, (10)

where σthresh corresponds to the empirically chosen threshold value for the selection of the singular values
resulting from the decomposition in eq. (9).

The resulting local projection basis V∗
sn , consisting of NV∗ vectors, is then introduced in place of the generic,

univariate transformation corresponding to eq. (3), such that

û∗
sn(x) = V∗

sn α∗
sn(x), (11)

leading to a reduced system associated with the initial problem in eq. (1), such that

V∗
sn

HZ(x)V∗
snα

∗
sn(x) = V∗

sn
Hf(x), (12)

involving NV∗ ≤ NVmer generalised coordinates in α∗
sn(x).

3 A multi-interval approach: the bivariate case

In practice, a reduced-order model computed from a single reference point sn may not be able to efficiently
approximate the full-order model in the desired range of parameters. Introducing multiple expansion points
sn may increase the accuracy of the reduced-order model for wider parameter ranges, but each new expansion
point requires the decomposition of the full order system matrix. Increasing the order of approximation is
typically less computationally expensive, but the approximation quality may not significantly benefit from the
higher orders and eventually stagnate. This implies a trade-off between increasing the order of approximation,
reflected in the size of the basis NV for a given reference point sn, and a multi-interval strategy involving
several such reference points.

Regardless of the motivation for a multi-interval approximation, an assessment of the approximation error
is a necessary prior step for an efficient, automated sampling of the parametric space, and discussed in the
following section.

3.1 Error estimator

A residue-based error estimator is used to identify bounds of intervals of the approximated solution with a
satisfying degree of accuracy. Such residual-based estimators have shown to be both efficient and accurate
ways of tracking the approximation error [19, 20, 21, 22, 15, 23, 24, 25]. The residue-based error estimator
approach implemented seeks to be relying on a unique set of local bases merged into V∗

sn , see eq. (10), and a
single evaluation of the error limited to a subset of necessary points in the parametric space. The residue is
evaluated on the basis of the residual vector r∗sn (x) associated with the approximated solution û∗

sn (x), see
eqs. (11) and (12), following a transformation with the merged local bases V∗

sn of eq. (10). This residual
vector is given by

r∗sn (x) = Z (x) û∗
sn (x)− f (x) , (13)

for a generic problem of the form of eq. (1). It may subsequently be used as an error indicator based on its
ℓ2 norm, such that,

ε∗sn (x) =
||r∗sn (x) ||2

min
(
||r∗sn (x) ||2

) , (14)

which is normalized with respect to the minimum residual norm evaluated, presumably corresponding to an x
in the closest vicinity of sn, if an evaluation in sn is excluded. This error estimator enables the search for
bounds of convergence associated with each pair of basis and reference point, as further detailed in the next
section.
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3.2 Contour-following-based multi-interval strategy for the bivariate case

In order to establish a multi-interval strategy, i.e. defining a set of points {s1, . . . , sn, . . . , sN} at which local
bases are to be calculated, the bounds of accuracy associated with each of these bases have to be estimated.
This is here proposed to be done assuming a monotonic increase of the approximation error as the distance
to the reference parametric point sn increases, within the limit of relatively small approximation errors. A
contour tracing algorithm is utilised, seeking to follow an error estimator isocontour corresponding to the
predetermined tolerance εmax, in order to approximate the required bounds. Starting from a point in parameter
space close to s1 = (x11, x21), the algorithm seeks the first contour point, which is the first point in an
arbitrarily chosen direction at which the approximation error is estimated to be larger than εmax. It then
iteratively determines the closed contour around the parameter region of sufficiently accurate approximation
by a Moore-Neighbour approach. The estimation of such bounds of convergence subsequently allows to
choose sequentially locations for new reference points sn = (x1n, x2n), n = 2, . . . ,N, for the calculation of
additional local bases. This opens the way for a multi-interval solution strategy, gradually filling the entire
bivariate range of interest with sub-domains of satisfactory approximation, as described below.

Let Ω be a set of all vectors xi where the solution to eq. (1) is sought to be approximated, and ∂Ω its outer
boundary set. A sequential approach is considered in order to establish N local merged bases associated with
a sequence of N reference points ⟨sn|sn ∈ Ω ∧ n ∈ {1,N}⟩. The algorithm aims at gradually filling the
parametric domain of interest with converged sub-intervals. Each interval is bounded by a contour where
the accuracy of the reduced-order model associated with the corresponding reference point is estimated to
be sufficient. The number of local merged bases necessary to approximate the solution in the complete
domain of interest Ω is iteratively determined given a tolerance for the error estimator εmax, the bounds of
the parametric space of interest ∂Ω, as well as a gap-tolerance ∆gap max, in terms of the maximum allowable
distance between two neighbour domains of convergence. In this region none of the local merged bases V∗

sn
fulfils the convergence criterion ε∗sn (x) ≤ εmax. Since the introduction of a residual-based error estimator
alleviates the need for multiple reduced-order models resulting from complementary approximations of the
original model, the dimensions of the reduction bases are fixed a priori and set to be equal for all local bases.

Further, the set Ωconv is introduced, comprising the parameter combinations for which at least one of the
merged local bases fulfils the convergence criterion,

Ωconv =
{
x | ε∗sn (x) ≤ εmax ∧ n ∈ {1,N}

}
. (15)

∂Ωconv is subsequently introduced as its boundary set, while its relative complement, where no local basis
allows to reach an acceptable approximation, is denoted Ωgap = Ω \Ωconv. Additionally, associated with each
of the reference points sn, the local merged basis denoted V∗

sn allows to approximate the solution for a subset
Ωsn ⊆ Ωconv. This local basis V∗

sn is obtained according to the details introduced in section 2.2, leading to
eq. (10), whose procedure is referred to in Algorithm 1 as the function GETBASIS(). For each local basis, the
isocontour associated with the error estimator tolerance εmax is obtained according to the Moore-Neighbour
contour tracing algorithm and referred to as the function GETCONTOUR(). The closure associated with the
boundary set ∂Ωsn is obtained via a function referred to as FILL(). Finally, the function D() refers to the
signed distance function, returning the distance of a parameter combination x to a boundary ∂Ω or ∂Ωconv,
assuming here a convention of negative values inside Ωconv and positive outside. A conceptual pseudocode of
the multi-interval generation of these N local bases is presented in Algorithm 1.

Algorithm 1 leads to a set of N local bases V∗
sn associated with the reference points sn, n = 1, . . . ,N. It

is illustrated for a case consisting of four reference points in fig. 2. Depending on the choice of tolerance
∆gap max, the domains of convergence associated with these local bases are not necessarily overlapping,
which may lead to gaps in the domain where the approximation of the original solution is not fulfilling the
sought degree of accuracy. It is, however, noteworthy that by construction, these bases are not expected to be
consisting of vectors mutually linearly independent. According to the nature of the dependence of the response
with respect to the set of variables in x, neighbouring local bases may contribute to enriching the subspace
spanned by each basis V∗

sn , n = 1, . . . ,N. These local bases may thus be advantageously recombined into a
global basis, in particular in order to improve the accuracy of the approximation in the gaps, where no specific
local basis is initially assigned. This recombination is in the following examples applied to form a single
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Algorithm 1: Calculation of the multi-interval sub-bases
Result: A set of sub-bases with their estimated bounds of convergence

// Initialisation
1 εmax ←Max error tolerance
2 ∆gap max ←Max allowable gap distance to any interval
3 Define Ω, ∂Ω, Ωconv = ∅ // Domain and boundary sets
4 Ωgap ← Ω \ Ωconv
// Starting basis from initial reference point s1

5 s1 ← (x11 x21)
6 V∗

s1 ← GETBASIS(s1,NV,NΣ)
7 ∂Ωs1 ← GETCONTOUR(s1,V∗

s1 ,εmax)
8 Ωs1 ← FILL(∂Ωs1)
// Update convergence and gap sets

9 Ωconv ← Ωconv ∪ Ωs1

10 Ωgap ← Ω \ Ωconv
11 Gap← MAX

{
D(x, ∂Ωconv ∪ ∂Ω) | x ∈ Ωgap

}

12 n← 1
// Calculation of subsequent sub-bases

13 while Gap > ∆gap max do
14 n← n+ 1
15 sn ← ARGMAX

{
D(x, ∂Ωconv ∪ ∂Ω) | x ∈ Ωgap

}

16 V∗
sn ← GETBASIS(sn,NV,NΣ)

17 ∂Ωsn ← GETCONTOUR(sn,V∗
sn ,εmax)

18 Ωsn ← FILL(∂Ωsn)
// Update convergence and gap sets

19 Ωconv ← Ωconv ∪ Ωsn

20 Ωgap ← Ω \ Ωconv
21 Gap← MAX

{
D(x, ∂Ωconv ∪ ∂Ω) | x ∈ Ωgap

}

22 end

global basis, which may, however, be easily adapted to only subsets of neighbouring local bases in cases of
very large parametric domains. A natural way to recombine these is via an SVD, as already introduced for the
sequences of local bases emerging from the partial differentiation process in section 2.2, implicitly performed
in function GETBASIS() of Algorithm 1. Similarly to eq. (9), the merged basis matrix V∗mer =

[
V∗

s1 · · ·V∗
sN

]

is decomposed following an SVD such that

V∗mer =

NV∗mer∑

i=1

σ∗
iw

l∗
i w

r∗
i
T, (16)

where NV∗mer corresponds to the total number of basis vectors in V∗mer; σ∗
i , wl∗

i , and wr∗
i correspond to

the singular values and left and right singular vectors respectively. From the SVD, the left singular vectors
associated with the highest singular values are selected as the components of the reduced merged basis V∗∗,
such that assuming a descending-ordered sequence of singular values

(
σ∗
1 · · ·σ∗

NV∗mer

)
, the reduced, merged

basis is given by
V∗∗ =

{
wl∗

i | i ∈ (1,NV∗mer) ∧ σ∗
i ≥ σthresh

}
, (17)

where σthresh corresponds to an empirically chosen threshold value for the selection of the singular values
resulting from the decomposition in eq. (16).

The resulting global reduction matrix V∗∗, consisting of NV∗∗ vectors, is then introduced in place of the
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(a) Completed Moore-Neighbour algorithm for s1.
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(b) New reference point s2 (cf. Algorithm 1, line 15).
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Ωs4
∂Ωs4

(d) After convergence.

Figure 2: Illustration of Algorithm 1. The domain of interest Ω is depicted in light blue, the converged
contours Ωsn in light orange.

single-interval transformation corresponding to eq. (11), such that,

û∗∗(x) = V∗∗α∗∗(x). (18)

This leads to a reduced system associated with the initial problem in eq. (1), such that,

V∗∗TZ(x)V∗∗α∗∗(x) = V∗∗Tf(x), (19)

involving NV∗∗ ≤ NV∗mer generalised coordinates in α∗∗(x).
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4 Application

In order to evaluate the potential of the MWCAWE approach, it is here applied to a poro-acoustic test case.

4.1 Problem and reference solution

The MWCAWE approach and the associated sampling strategy is implemented for the approximation of a
bivariate poro-acoustic problem, adapted from the model introduced in [26]. This problem models the interior
cavity of a passenger train equipped with a 15 cm layer of sound absorbing porous material on the top surface.
A time-harmonic point source is defined at a lower-back corner of the passenger cavity and parametric sweeps
with respect to both the frequency and the static airflow resistivity of the porous layer are performed. All
boundary walls are considered as rigid walls, except from the porous boundary. The discretised problem
consists of around Nn ≈ 300 000 DOFs. Assuming a poroelastic material where the motion of the skeleton
may be neglected, the Delany-Bazley-Miki empirical model [27, 28] is used in order to describe the behaviour
of the porous layer as an equivalent fluid. The acoustic response of the porous layer is thus governed by two
independent variables: the frequency f and the static airflow resistivity Φ. The associated equivalent speed of
sound c̃p is complex-valued and frequency-dependent, and may be expressed as

c̃p =

√
K̃eq

ρ̃eq
, (20)

where the density ρ̃eq and bulk modulus K̃eq are complex-valued and frequency-dependent, given by

ρ̃eq(f,Φ) = ρ0

[
1 +

(
5.5− 8.43i

)(
1000

f

Φ

)−0.632] [
1 +

(
7.81− 11.41i

)(
1000

f

Φ

)−0.618]
, (21a)

K̃eq(f,Φ) = ρ0c
2
0

1 +
(
5.5− 8.43i

)(
1000

f

Φ

)−0.632

1 +
(
7.81− 11.41i

)(
1000

f

Φ

)−0.618 , (21b)

where (̃·) denotes a complex-valued quantity, i the imaginary unit, ρ0 = 1.21 kgm−3 is the ambient density
of the air saturating the pores, and c0 = 343m s−1 is the speed of sound in the air.

The discretised FE problem for two coupled domains governed by the Helmholtz equation (one with a fluid
assumed to be inviscid, compressible, homogeneous, and the other with the equivalent fluid model for the
fibrous material with high porosity aforementioned) may be presented in the following form

(
Ka −

ω2

c20
Ma +Kp −

ω2

c̃p
2Mp

)
u = f , (22)

where (·)a denote air cavity global matrices and (·)p porous global matrices. u is the vector of nodal unknowns
(acoustic pressure fluctuation here). The right-hand-side vector f , associated with the time-harmonic acoustic
excitation is in practice only non-zero at a few DOFs. The FE problem in eq. (22) can again be expressed in
the generic form of eq. (1)

Zpa (f,Φ)u (f,Φ) = f , (23)

and is thus suitable for the proposed multivariate approach.

Figure 3 illustrates the geometry of the cavity as well as the solution at a given point of the parametric sweep
for a frequency of f = 63Hz and a flow resistivity of Φ = 25 000N sm−4. The reference solution for
the bivariate parametric sweep, where f ∈ [50, 150]Hz and Φ ∈ [3000, 50000]N sm−4, at a point in the
lower-middle part of a cross-section at the front of the passenger cavity, is plotted in fig. 4. The solution is
evaluated for a uniform distribution of frequency and flow resistivity in these ranges with increments of 1Hz
and 1000N sm−4, respectively, leading to a grid of 4848 solution points to be evaluated for the domain of
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Figure 3: Sound pressure level of the damped solution at f = 63Hz, Φ = 25 000N sm−4, scale 40− 110dB.
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Figure 4: Reference solution. Sound pressure level at a point in the lower-middle part of a cross-section at the
front of the passenger cavity, parametric solution, in dB.

interest. The non-damped cavity problem consists of 52 eigenfrequencies in the frequency ranged considered,
see [26].

4.2 MWCAWE approximation

In order to illustrate the behaviour of the multi-point procedure introduced in section 2.2 combined with
the associated residue-based contour-following approach, fixed orders of maximum partial derivatives are
set a priori for all local bases. These are arbitrarily set to orders Nx1 = Nf = 11 for the frequency and
Nx2 = NΦ = 5 for the flow resistivity, thus anticipating the fact that the solution is more sensitive to variations
in frequency than flow resistivity in the bounds of interest. For a two-sequence approach, this leads to local
merged bases consisting of 2 (Nf + NΦ) = 32 basis vectors, cf. section 2.2 and fig. 1. The starting reference
point is chosen at f = 88Hz and Φ = 25 000N sm−4. For the contour following algorithm, the residual
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error tolerance is set to εmax = 1e7, in practice involving a normalisation with respect to the residual error at
the reference point for each interval. Finally, the gap tolerance for the iterative introduction of new reference
points is set such that the maximum distance between two contours of convergence, ∆gap max, is of 10 units in
the sense of the Chebyshev distance, or of 5 units for the distance between a contour and a boundary of the
domain. These units correspond, for the considered bivariate problem, to the previously introduced uniform
grid associated with frequency and flow resistivity increments. Thus, the domain of interest contains 4848
solution points.
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(a) 2 local bases.
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(b) 5 local bases.
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(c) 7 local bases.
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(d) 9 local bases.

Figure 5: Contour-following, multi-interval calculation of local bases for the MWCAWE. Starting expansion
point: f = 88Hz and Φ = 25 000N sm−4. Fixed partial derivative orders in frequency/flow resistivity: 11/5.
Contours of convergence associated with the first 2, 5, 7, and 9 local bases. The regions with darker contours
correspond to the latest calculated local bases.

Figure 5 shows 4 key steps associated with Algorithm 1. The sequence of fig. 5a to fig. 5d depicts an increasing
number of convergence isocontours associated with local bases independently calculated from the reference
points introduced at each iteration of Algorithm 1. The darker contours correspond to the latest addition in the
successive iterations of the algorithm. Given the input parameters described above, the sequence ends after 9
local bases in fig. 5d. Note a few gaps remaining between the convergence contours, such as for low values of
the flow resistivity in the ranges [80, 88]Hz or [112, 130]Hz. The gaps are in agreement with the introduced
gap tolerance ∆gap max. These nine local bases are recombined into a single projection basis in an SVD step,
see eq. (16). This recombination is further intended to improve the accuracy of the approximation in the gaps
where all the neighbour local bases may contribute. In order both to ensure a well-conditioned reduced system
of equations and to reduce the number of DOFs, the basis vectors associated with the lowest singular values
are discarded, according to eq. (17), such that σthresh = 1e−8 · σmax, where σmax is the largest singular value.
In the present case, this truncation results in downsizing the merged basis from NV∗mer = 288 to NV∗∗ = 275
basis vectors. This minor reduction of the size of the basis shows the close-to-maximum dimension of the
vector space spanned by the independently calculated and merged local bases.
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Figure 6: Error of the approximate solution from the merged bases associated with the contour of fig. 5. Fixed
partial derivative orders in frequency/flow resistivity: 11/5, and 275 final basis vectors from 9 merged local
bases.

In fig. 6 the resulting approximation error associated with the multi-point MWCAWE approach is plotted: the
estimated error in fig. 6a and the actual difference to the reference solution in fig. 6b. A qualitative comparison
between the plots shows the good correlation between the error estimator and the exact approximation error.
Thus, the error estimator enables a fast evaluation of the bounds of convergence and the actual resulting
approximation error associated with the MWCAWE. It is also noteworthy to mention that the error levels in
the regions where gaps between the contours of convergence remained after all nine local bases are taken
into consideration and merged into a single global reduced basis remain very low. The errors are mostly
comparable to the levels within the bounds of convergence determined in fig. 5.

5 Conclusion

The MWCAWE, a multivariate model order reduction method relying on the WCAWE algorithm, is presented.
It consists in a two-stage generation of local bases, subsequently recombined for a projection-based approach
to approximate the full-order parametric model. At the heart of the method, a reduced set of partial derivation
pathways of the parametric system matrices allow to generate local bases using the original WCAWE algorithm.
The number of these partial derivation pathways is in principle linearly increasing with the parametric
dimensionality. Additionally, in order to both limit the maximum partial derivative orders associated with
a rapid increase of operations associated with the WCAWE algorithm and to improve the accuracy of the
approximation in a given parametric domain, a sampling strategy is included. Here presented for the case
of bivariate problems, it relies on a residue-based estimation of the approximation error combined with a
contour-following algorithm, enabling to sequentially select new points outside the domain of convergence.
The MWCAWE approach, combined with the multi-point strategy, is applied to a poro-acoustic light train
cavity problem, and provides a good approximation over the entire parametric domain of interest with 9
recombined local bases. The associated residue-based estimator is shown to capture the main features of
the approximation error. Specific ongoing perspectives to this contribution consist in adapting the contour-
following approach to a compressed version allowing to efficiently adapt the multi-point strategy to higher
dimensionalities.
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